scholarly journals Nanometer Ammonium Perchlorate and Ammonium Nitrate Prepared with 2D Network Structure via Rapid Freezing Technology

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1605 ◽  
Author(s):  
Yi Wang ◽  
Xiaolan Song ◽  
Fengsheng Li

Nanometer (nano) ammonium perchlorate (AP) and ammonium nitrate (AN) were prepared with 2D network structures by the ultra-low temperature spray method. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis/infrared spectrometry (TG-IR) were employed to probe the micron structure, crystal phase, and thermal decomposition of nano AP and nano AN. SEM images revealed that the sizes of nano AP and AN were in the nanometer scale (<100 nm) in one dimension. XRD patterns showed that the crystal phases of nano AP and AN were in accordance with those of raw AP and raw AN, respectively. DSC traces indicated that the thermal decomposition process of AP depended on its particle size, while the thermolysis of AN was independent of the particle size of AN. TG-IR analyses illustrated that the decomposition products of nano AP were NO2, N2O, HCl and H2O, with a small amount of NOCl, and the main decomposition products of nano AN were N2O and H2O, with a small amount of NH3. The results of mechanical sensitivity tests indicated that nano AP was more sensitive than raw AP and both nano AN and raw AN were very insensitive to impact and friction stimuli.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2457 ◽  
Author(s):  
Haifeng Zhao ◽  
Jing Lv ◽  
Junshan Sang ◽  
Li Zhu ◽  
Peng Zheng ◽  
...  

In this work, a mixing-calcination method was developed to facilely construct MXene/CuO nanocomposite. CuO and MXene were first dispersed in ethanol with sufficient mixing. After solvent evaporation, the dried mixture was calcinated under argon to produce a MXene/CuO nanocomposite. As characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectra (XPS), CuO nanoparticles (60–100 nm) were uniformly distributed on the surface and edge of MXene nanosheets. Furthermore, as evaluated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the high-temperature decomposition (HTD) temperature decrease of ammonium perchlorate (AP) upon addition of 1 wt% CuO (hybridized with 1 wt% MXene) was comparable with that of 2 wt% CuO alone, suggesting an enhanced catalytic activity of CuO on thermal decomposition of AP upon hybridization with MXene nanosheets. This strategy could be further applied to construct other MXene/transition metal oxide (MXene/TMO) composites with improved performance for various applications.


Author(s):  
Konstantin G. Gorbovskiy ◽  
Alena S. Ryzhova ◽  
Andrey M. Norov ◽  
Denis A. Pagaleshkin ◽  
Valentina N. Kalinina ◽  
...  

Complex mineral ammonium nitrate-based fertilizers are complex multicomponent salt systems possessing low thermal stability and prone to self-sustaining decomposition. This leads to the need to increase the requirements for fire and explosion safety in their manufacture, storage and transportation, caused by the fact that ammonium nitrate is a solid oxidant able to support a combustion, and its heating in confined space can lead to detonation. Components that make up such fertilizers can both reduce (phosphates and ammonium sulfate) and accelerate (chlorine compounds) decomposition of ammonium nitrate. Thus, the thermal stability of fertilizers based on ammonium nitrate largely depends on the ratio of the components that make up its composition or formed as a result of the chemical reaction. The simplest way to reduce the content of ammonium nitrate and increase the thermal stability of fertilizer without changing the content of essential nutrients is to increase the degree of phosphoric acid ammoniation. In this paper, the phase composition change of grade 22:11:11 nitrogen-phosphorus-potassium fertilizer obtained with different ammoniation degree in the process of thermal decomposition was studied by X-ray phase analysis. To obtain this fertilizer, wet-process phosphoric acid obtained sulfuric acid attack of the Khibin apatite concentrate by a hemihydrate method is used. It is shown that an increase in the ammoniation degree has a significant effect on the exothermic decomposition of ammonium nitrate and the amount of material that is released into the gas phase. The phases formed at each stage of the decomposition are determined.Forcitation:Gorbovskiy K.G., Ryzhova A.S., Norov A.M., Pagaleshkin D.A., Kalinina V.N., Mikhaylichenko A.I. Study of thermal decomposition products of nitrogen-phosphorus-potassium fertilizers based on ammonium nitrate by X-ray diffractuon. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 1. P. 72-77


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 73
Author(s):  
Donghyeon Lee ◽  
Byoungseung Yoo

Fluidized-bed agglomeration (FBA) is known to modify the structure and rheology of food powders. In this study, guar gum (GG) powders with various concentrations of sucrose binder (0%, 10%, 20%, or 30%) were subjected to fluidized-bed agglomeration. Subsequently, changes in the characteristics of the GG powders were evaluated by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size distribution (PSD) analysis, and rheological and dispersibility measurements. SEM images and FTIR spectra revealed surface morphology changes and structural modification, respectively, in the original GG powder after FBA, although the changes observed in FTIR spectra were only slightly dependent on sucrose concentration at low concentrations (0–20%). XRD patterns confirmed that the crystallinity of the GG powder was affected by FBA, but not greatly so by binder concentration. The PSD results showed that the GG particle size was increased by FBA and there was a clear relationship between sucrose concentration (10–30%) and mean particle size. The rheological behavior and dispersibility of GG (properties that are known to be affected by the structure of a powder) were also influenced by sucrose concentration. To sum up, FBA and the concentration of sucrose binder used can serve as factors for modifying GG powder.


2011 ◽  
Vol 217-218 ◽  
pp. 1497-1503
Author(s):  
Jie Liang Wang ◽  
Ai Juan Gu ◽  
Guo Zheng Liang

Poly vinyl pyrrolidone (PVP(K30)) / Bisphenol A Dicyanate ester (BADCy) blends were fabricated to increase the toughness of BADCy by blending processing in this paper. Curing parameters were determined by gelation time curves and differential scanning calorimetry (DSC) of the systems. Fourier transform infrared spectrometry (FTIR) and DSC data were employed to show the curing behavior and kinetics of the systems. Mechanical properties of the cured resin had been improved rapidly with the increasing of PVP(K30) at low mass fraction, but would decrease when mass fractions of PVP(K30) were higher than 15%. Scanning electron micrograph (SEM) was applied to show the microstructures of the cured matrixes. Based on the thermogravimetric analysis (TGA) curves, water absorption curves, SEM images and dielectric properties of the blends, it can be concluded that the addition of PVP(K30) can improve the toughness of BADCy greatly with little loss of other properties.


2012 ◽  
Vol 602-604 ◽  
pp. 178-182 ◽  
Author(s):  
Yun Shan Bai ◽  
Jian Ping Zeng ◽  
Lu De Lu ◽  
Jian Chun Bao

Cubic pyrochlore type NdxCo2-xZr2O7nano-crystals were prepared by salt-assistant glycine solution combustion method (SGCM), with neodymium nitrate, cobalt nitrate and zirconium nitrate as raw materials, glycine as the incendiary agent, and KCl as a reaction inert salt. The NdxCo2-xZr2O7nano-crystals were characterized by means of XRD (X-ray powder diffraction), FT-IR (Fourier trans- form-infrared spectroscopy), Raman spectroscopy, TEM (Transmission electron microscope) and HRTEM (High resolution transmission electron microscopy). The results showed that neodymium ions were partially substituted by cobalt ions, while maintaining the original pyrochlore structure. The nano particles obtained had a perfect crystal structure, good dispersion, and the size was about 31nm. For Nd1.9Co0.1Zr2O7nanocrystals, the four strong diffraction peaks were at 2θ=29.18°, 33.80°, 48.49° and 57.53°. The corresponding crystal plane distances calculated by Bragg equation λ=2dSinθ were 0.306, 0.265, 0.188 and 0.160 nm. Study the catalyst effect of NdxCo2-xZr2O7on the thermal decomposition of ammonium perchlorate (AP) using DSC (Differential scanning calorimetry). The results showed that nano NdxCo2-xZr2O7had high catalytic activity during on the thermal decomposition of ammonium perchlorate. With 2% more nano NdxCo2-xZr2O7, the peak temperature of AP thermal decomposition reaction dropped by nearly 88°C. The apparent decomposition reaction heat increased from 655J•g-1to 1073J•g-1. The results showed that the catalytic effect of thermal decomposition of AP with nano cobalt-doped zirconium acid neodymium is better than the single component of nano-metal oxides and undoped zirconate neodymium nanocrystals.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Veeradate Piriyawong ◽  
Voranuch Thongpool ◽  
Piyapong Asanithi ◽  
Pichet Limsuwan

Al2O3nanoparticles were synthesized using laser ablation of an aluminum (Al) target in deionized water. Nd:YAG laser, emitted the light at a wavelength of 1064 nm, was used as a light source. The laser ablation was carried out at different energies of 1, 3, and 5 J. The structure of ablated Al particles suspended in deionized water was investigated using X-ray diffraction (XRD). The XRD patterns revealed that the ablated Al particles transformed intoγ-Al2O3. The morphology of nanoparticles was investigated by field emission scanning electron microscopy (FE-SEM). The FE-SEM images showed that most of the nanoparticles obtained from all the ablated laser energies have spherical shape with a particle size of less than 100 nm. Furthermore, it was observed that the particle size increased with increasing the laser energy. The absorption spectra of Al2O3nanoparticles suspended in deionized water were recorded at room temperature using UV-visible spectroscopy. The absorption spectra show a strong peak at 210 nmarising from the presence of Al2O3nanoparticles. The results on absorption spectra are in good agreement with those investigated by XRD which confirmed the formation of Al2O3nanoparticles during the laser ablation of Al target in deionized water.


2010 ◽  
Vol 152-153 ◽  
pp. 309-314 ◽  
Author(s):  
Jun Zhao ◽  
Wei Liang Zhou ◽  
Fu Ming Xu

Nano Metal/C (Metal=Fe, Co) composite materials, in which nano iron and cobalt particles were uniformly distributed in carbon matrix, was prepared by pyrolysis of M-exchanged cation exchange resin(M-PAA). X-ray diffraction (XRD), Transmission Electron Microscope (TEM) results showed the particle size and morphology of nano iron and cobalt in M/C could be controlled by pyrolytic temperature. The particle size of Co and Fe in M/C obtained at 500 was respectively 15-40 nm and 10-35 nm. DTA was employed to test the thermal decomposition of ammonium perchlorate (AP) in the M/C and AP mixture. Results indicated the decomposition temperature at high-temperature decomposition of AP was lowered with the addition of amount of M/C-500, and the high temperature decomposition peaks of AP respectively lowered as much as 145.2°Cand 68.3°C with adding amount of 5% of Co/C and Fe/C obtained at 500 . The high and low temperature decomposition peaks of AP overlapped with addition of Co/C.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7169
Author(s):  
Zhe Yu ◽  
Haozhe Ren ◽  
Yu Zhang ◽  
Youbei Qiao ◽  
Chaoli Wang ◽  
...  

Poly(benzyl malate) (PBM), together with its derivatives, have been studied as nanocarriers for biomedical applications due to their superior biocompatibility and biodegradability. The acquisition of PBM is primarily from chemical routes, which could offer polymer-controlled molecular weight and a unique controllable morphology. Nowadays, the frequently used synthesis from L-aspartic acid gives an overall yield of 4.5%. In this work, a novel synthesis route with malic acid as the initiator was successfully designed and optimized, increasing the reaction yield up to 31.2%. Furthermore, a crystalline form of PBM (PBM-2) that polymerized from high optical purity benzyl-β-malolactonate (MLABn) was discovered during the optimization process. X-ray diffraction (XRD) patterns revealed that the crystalline PBM-2 had obvious diffraction peaks, demonstrating that its internal atoms were arranged in a more orderly manner and were different from the amorphous PBM-1 prepared from the racemic MLABn. The differential scanning calorimetry (DSC) curves and thermogravimetric curves elucidated the diverse thermal behaviors between PBM-1 and PBM-2. The degradation curves and scanning electron microscopy (SEM) images further demonstrated the biodegradability of PBM, which have different crystal structures. The hardness of PBM-2 implied the potential application in bone regeneration, while it resulted in the reduction of solubility when compared with PBM-1, which made it difficult to be dissolved and hydrogenated. The solution was therefore heated up to 75 °C to achieve benzyl deprotection, and a series of partially hydrogenated PBM was sequent prepared. Their optimal hydrogenation rates were screened to determine the optimal conditions for the formation of micelles suitable for drug-carrier applications. In summary, the synthesis route from malic acid facilitated the production of PBM for a shorter time and with a higher yield. The biodegradability, biosafety, mechanical properties, and adjustable hydrogenation widen the application of PBM with tunable properties as drug carriers.


The thermal decomposition of ammonium perchlorate in vacuo and under small initial pressures of nitrogen, to suppress sublimation, has been investigated in the temperature ranges 220 to 280°C and 380 to 450°C. The experimental techniques for following the decomposition and subsequent analysis of the products are described and gas analysis results given. In the low -temperature range only 30% decomposition occurred though the ‘residue’ was still ammonium perchlorate. In vacuo sublimation occurred all the time and also after decomposition had ceased which indicated that the reaction was not in the vapour phase. Some of the properties of the sublimed material and the ‘residue’ were investigated; in particular, it was found that the residue which was porous in texture (the decomposition had occurred throughout the crystal) could be ‘rejuvenated’ by exposure to a solvent vapour. The crystal transformation at 240°C from orthorhombic to cubic, the addition of impurities which might be intermediate decomposition products, and the addition of some metallic oxide catalysts, were also investigated.


Sign in / Sign up

Export Citation Format

Share Document