scholarly journals The Cohesin Complex and Its Interplay with Non-Coding RNAs

2021 ◽  
Vol 7 (4) ◽  
pp. 67
Author(s):  
Merve Kuru-Schors ◽  
Monika Haemmerle ◽  
Tony Gutschner

The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.

2019 ◽  
Vol 47 (6) ◽  
pp. 1881-1893
Author(s):  
Alexander J. Garvin

The cellular response to genotoxic DNA double strand breaks (DSBs) uses a multitude of post-translational modifications to localise, modulate and ultimately clear DNA repair factors in a timely and accurate manner. Ubiquitination is well established as vital to the DSB response, with a carefully co-ordinated pathway of histone ubiquitination events being a central component of DSB signalling. Other ubiquitin-like modifiers (Ubl) including SUMO and NEDD8 have since been identified as playing important roles in DSB repair. In the last five years ∼20 additional Ub/Ubl proteases have been implicated in the DSB response. The number of proteases identified highlights the complexity of the Ub/Ubl signal present at DSBs. Ub/Ubl proteases regulate turnover, activity and protein–protein interactions of DSB repair factors both catalytically and non-catalytically. This not only ensures efficient repair of breaks but has a role in channelling repair into the correct DSB repair sub-pathways. Ultimately Ub/Ubl proteases have essential roles in maintaining genomic stability. Given that deficiencies in many Ub/Ubl proteases promotes sensitivity to DNA damaging chemotherapies, they could be attractive targets for cancer treatment.


2008 ◽  
Vol 183 (6) ◽  
pp. 1019-1031 ◽  
Author(s):  
Nenggang Zhang ◽  
Sergey G. Kuznetsov ◽  
Shyam K. Sharan ◽  
Kaiyi Li ◽  
Pulivarthi H. Rao ◽  
...  

The cohesin complex is responsible for the accurate separation of sister chromatids into two daughter cells. Several models for the cohesin complex have been proposed, but the one-ring embrace model currently predominates the field. However, the static configuration of the embrace model is not flexible enough for cohesins to perform their functions during DNA replication, transcription, and DNA repair. We used coimmunoprecipitation, a protein fragment complement assay, and a yeast two-hybrid assay to analyze the protein–protein interactions among cohesin subunits. The results show that three of the four human cohesin core subunits (Smc1, Smc3, and Rad21) interact with themselves in an Scc3 (SA1/SA2)-dependent manner. These data support a two-ring handcuff model for the cohesin complex, which is flexible enough to establish and maintain sister chromatid cohesion as well as ensure the fidelity of chromosome segregation in higher eukaryotes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chun-Song Yang ◽  
Kasey Jividen ◽  
Teddy Kamata ◽  
Natalia Dworak ◽  
Luke Oostdyk ◽  
...  

AbstractAndrogen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.


1994 ◽  
Vol 14 (10) ◽  
pp. 6635-6646
Author(s):  
J A Diehl ◽  
M Hannink

Protein-protein interactions between the CCAAT box enhancer-binding proteins (C/EBP) and the Rel family of transcription factors have been implicated in the regulation of cytokine gene expression. We have used sequence-specific DNA affinity chromatography to purify a complex from avian T cells that binds to a consensus C/EBP motif. Our results provide evidence that Rel-related proteins are components of the C/EBP-DNA complex as a result of protein-protein interactions with the C/EBP proteins. A polyclonal antiserum raised against the Rel homology domain of v-Rel and antisera raised against two human RelA-derived peptides specifically induced a supershift of the C/EBP-DNA complex in mobility shift assays using the affinity-purified C/EBP. In addition, several kappa B-binding proteins copurified with the avian C/EBP complex through two rounds of sequence-specific DNA affinity chromatography. The kappa B-binding proteins are distinct from the C/EBP proteins that directly contact DNA containing the C/EBP binding site. The identification of a protein complex that binds specifically to a consensus C/EBP site and contains both C/EBP and Rel family members suggests a novel mechanism for regulation of gene expression by Rel family proteins.


Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


2006 ◽  
Vol 173 (4) ◽  
pp. 533-544 ◽  
Author(s):  
Chad D. Knights ◽  
Jason Catania ◽  
Simone Di Giovanni ◽  
Selen Muratoglu ◽  
Ricardo Perez ◽  
...  

The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH2-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH2-terminal residues and enhances the interaction with promoters for which p53 possesses low DNA binding affinity, such as those contained in proapoptotic genes, leading to cell death. Further, acetylation of each of these two lysine clusters differentially regulates the interaction of p53 with coactivators and corepressors and produces distinct gene-expression profiles. By analogy with the “histone code” hypothesis, we propose that the multiple biological activities of p53 are orchestrated and deciphered by different “p53 cassettes,” each containing combination patterns of posttranslational modifications and protein–protein interactions.


Sign in / Sign up

Export Citation Format

Share Document