scholarly journals The Ethanol Fraction of White Rose Petal Extract Abrogates Excitotoxicity-Induced Neuronal Damage In Vivo and In Vitro through Inhibition of Oxidative Stress and Proinflammation

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1375 ◽  
Author(s):  
Jung-Min Yon ◽  
Yun-Bae Kim ◽  
Dongsun Park

Since oxidative stress and inflammation are involved in seizure-related neurotoxicity, the neuroprotective effect of a white rose (Rosa hybrida) petal extract (WRPE) in mice that are challenged with kainic acid (KA) were examined using behavioral epileptiform seizures as well as biochemical and morphological parameters of oxidative stress and inflammation. WRPE (50–200 mg/kg) was orally administered to male ICR mice for 15 days, and intraperitoneally challenged with KA (30 mg/kg). Seizure activity, lipid peroxidation, inflammatory cytokines, and related enzymes were analyzed in the brain tissue, in addition to the morphological alterations in the hippocampal pyramidal neurons. Separately, antioxidant ingredients in WRPE were analyzed, and antioxidant, anti-inflammatory, and neuroprotective activities of WRPE were investigated in HB1.F3 human neural stem cells (NSCs) to elucidate underlying mechanisms. Total polyphenol and flavonoid contents in WRPE were 303.3 ± 15.3 mg gallic acid equivalent/g extract and 18.5 ± 2.2 mg catechin/g extract, respectively. WRPE exhibited strong radical-scavenging activities and inhibited lipid peroxidation in vitro, and protected glutamate-induced cytotoxicity in NSCs by suppressing inflammatory process. Treatment with WRPE attenuated epileptiform seizure scores to a half level in KA-challenged mice, and decreased hippocampal pyramidal neuronal injury and loss (cresyl violet and DAPI staining) as well as astrocyte activation (GFAP immunostaining). Lipid peroxidation was inhibited, and mRNA expression of antioxidant enzymes (GPx, PHGPx, SOD1, and SOD2) were recovered in the brain tissues. Inflammatory parameters (cytokines and enzymes) including NF-kB, IL-1β, TNF-α, IL-6, HMGB1, TGF-β, iNOS, COX2, and GFAP mRNAs and proteins were also down-regulated by WRPE treatment. Taken together, the results indicate that WRPE could attenuate KA-induced brain injury through antioxidative and anti-inflammatory activities.


2020 ◽  
Vol 21 (19) ◽  
pp. 7152 ◽  
Author(s):  
Kyung Hee Lee ◽  
Myeounghoon Cha ◽  
Bae Hwan Lee

The brain is vulnerable to excessive oxidative insults because of its abundant lipid content, high energy requirements, and weak antioxidant capacity. Reactive oxygen species (ROS) increase susceptibility to neuronal damage and functional deficits, via oxidative changes in the brain in neurodegenerative diseases. Overabundance and abnormal levels of ROS and/or overload of metals are regulated by cellular defense mechanisms, intracellular signaling, and physiological functions of antioxidants in the brain. Single and/or complex antioxidant compounds targeting oxidative stress, redox metals, and neuronal cell death have been evaluated in multiple preclinical and clinical trials as a complementary therapeutic strategy for combating oxidative stress associated with neurodegenerative diseases. Herein, we present a general analysis and overview of various antioxidants and suggest potential courses of antioxidant treatments for the neuroprotection of the brain from oxidative injury. This review focuses on enzymatic and non-enzymatic antioxidant mechanisms in the brain and examines the relative advantages and methodological concerns when assessing antioxidant compounds for the treatment of neurodegenerative disorders.



2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Tao Tao ◽  
Guang-Jie Liu ◽  
Xuan Shi ◽  
Yan Zhou ◽  
Yue Lu ◽  
...  

Abstract Background Microglia are resident immune cells in the central nervous system and central to the innate immune system. Excessive activation of microglia after subarachnoid haemorrhage (SAH) contributes greatly to early brain injury, which is responsible for poor outcomes. Dehydroepiandrosterone (DHEA), a steroid hormone enriched in the brain, has recently been found to regulate microglial activation. The purpose of this study was to address the role of DHEA in SAH. Methods We used in vivo models of endovascular perforation and in vitro models of haemoglobin exposure to illustrate the effects of DHEA on microglia in SAH. Results In experimental SAH mice, exogenous DHEA administration increased DHEA levels in the brain and modulated microglial activation. Ameliorated neuronal damage and improved neurological outcomes were also observed in the SAH mice pretreated with DHEA, suggesting neuronal protective effects of DHEA. In cultured microglia, DHEA elevated the mRNA and protein levels of Jumonji d3 (JMJD3, histone 3 demethylase) after haemoglobin exposure, downregulated the H3K27me3 level, and inhibited the transcription of proinflammatory genes. The devastating proinflammatory microglia-mediated effects on primary neurons were also attenuated by DHEA; however, specific inhibition of JMJD3 abolished the protective effects of DHEA. We next verified that DHEA-induced JMJD3 expression, at least in part, through the tropomyosin-related kinase A (TrkA)/Akt signalling pathway. Conclusions DHEA has a neuroprotective effect after SAH. Moreover, DHEA increases microglial JMJD3 expression to regulate proinflammatory/anti-inflammatory microglial activation after haemoglobin exposure, thereby suppressing inflammation.



2020 ◽  
Author(s):  
Gervason Moriasi ◽  
Elias Nelson ◽  
Epaphrodite Twahirwa

Abstract Oxidative stress is a critical etiologic factor and driver of inflammatory responses, witnessed in chronic and persistent conditions. The current anti-oxidative stress and anti-inflammatory drugs are associated with detrimental effects, high dependence, high costs, inaccessibility, among other drawbacks; therefore, a need for alternatives is imperative. Despite the remarkable potential of medicinal plants, there are scanty empirical studies on their pharmacologic efficacy. The Phytexponent is an alcoholic polyherbal preparation of Allium sativum, Triticum repens, Echinacea purpurea, Viola tricolor and Matricaria chamomilla. In complementary medicine, the Phytexponent is used to boost immunity, to treat inflammatory disorders, oxidative stress, blood pressure, diabetes, stress/depression, among other conditions. However, there is no sufficient scientific data to support these healing claims. Therefore, in the current study evaluated the in vitro anti-inflammatory, antioxidant activities and qualitative phytochemical composition of the Phytexponent. The in vitro anti-inflammatory activities were evaluated using the inhibition of protein denaturation and the human erythrocyte (HRBC) membrane stabilization techniques. Antioxidant activities were evaluated by the 1,1-diphenyl-picryl-1-hydrazyl (DPPH) radical scavenging-, the hydroxyl radical scavenging- and catalase activities. Qualitative phytochemical screening was performed using standard procedures. The results showed a significantly higher percentage inhibition of heat-induced- and hypotonicity induced HRBC hemolysis by the Phytexponent at concentrations of 50 % and 100 %, compared with the percentage inhibitions of etanercept (p<0.05). No significant differences in percentage inhibitions of protein denaturation were observed among concentrations of 12.5 %,25.0 %,50.0 %,100.0 % of the Phytexponent and etanercept (25 mg/ml) (p˃0.05). Furthermore, the Phytexponent demonstrated high antioxidant activities against the DPPH- (IC50=0.00733%) and the hydroxyl- (IC50 = 0.716 %) radicals in vitro.The Phytexponent recorded significantly higher catalase activities at concentrations of 1 % and 0.1 % than those recorded by ascorbic acid at similar concentrations. Qualitative phytochemical screening revealed the presence of phenols, flavonoids, tannins, among other antioxidant associated phytochemicals. The bioactivities of the Phytexponent reported herein, were attributed to the presence of these phytochemicals. Further studies to establish specific mode(s) through which the Phytexponent exerts in vitro anti-inflammatory and antioxidant effects are encouraged. Moreover, in vivo anti-inflammatory and antioxidant activities should be done to determine the replicability of these findings in vivo. Bioassay-guided isolation of compounds responsible for the reported bioactivities herein should be done.



2020 ◽  
Author(s):  
Gervason Moriasi ◽  
Elias Nelson ◽  
Epaphrodite Twahirwa

Abstract Oxidative stress is a critical etiologic factor and driver of inflammatory responses, witnessed in chronic and persistent conditions. The current anti-oxidative stress and anti-inflammatory drugs are associated with detrimental effects, high dependence, high costs, inaccessibility, among other drawbacks; therefore, a need for alternatives is imperative. Despite the remarkable potential of medicinal plants, there are scanty empirical studies on their pharmacologic efficacy. The Phytexponent is an alcoholic polyherbal preparation of Allium sativum, Triticum repens, Echinacea purpurea, Viola tricolor and Matricaria chamomilla. In complementary medicine, the Phytexponent is used to boost immunity, to treat inflammatory disorders, oxidative stress, blood pressure, diabetes, stress/depression, among other conditions. However, there is no sufficient scientific data to support these healing claims. Therefore, in the current study evaluated the in vitro anti-inflammatory, antioxidant activities and qualitative phytochemical composition of the Phytexponent. The in vitro anti-inflammatory activities were evaluated using the inhibition of protein denaturation and the human erythrocyte (HRBC) membrane stabilization techniques. Antioxidant activities were evaluated by the 1,1-diphenyl-picryl-1-hydrazyl (DPPH) radical scavenging-, the hydroxyl radical scavenging- and catalase activities. Qualitative phytochemical screening was performed using standard procedures. The results showed a significantly higher percentage inhibition of heat-induced- and hypotonicity induced HRBC hemolysis by the Phytexponent at concentrations of 50 % and 100 %, compared with the percentage inhibitions of etanercept (p<0.05). No significant differences in percentage inhibitions of protein denaturation were observed among concentrations of 12.5 %,25.0 %,50.0 %,100.0 % of the Phytexponent and etanercept (25 mg/ml) (p˃0.05). Furthermore, the Phytexponent demonstrated high antioxidant activities against the DPPH- (IC50=0.00733%) and the hydroxyl- (IC50 = 0.716 %) radicals in vitro.The Phytexponent recorded significantly higher catalase activities at concentrations of 1 % and 0.1 % than those recorded by ascorbic acid at similar concentrations. Qualitative phytochemical screening revealed the presence of phenols, flavonoids, tannins, among other antioxidant associated phytochemicals. The bioactivities of the Phytexponent reported herein, were attributed to the presence of these phytochemicals. Further studies to establish specific mode(s) through which the Phytexponent exerts in vitro anti-inflammatory and antioxidant effects are encouraged. Moreover, in vivo anti-inflammatory and antioxidant activities should be done to determine the replicability of these findings in vivo. Bioassay-guided isolation of compounds responsible for the reported bioactivities herein should be done.



Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 477
Author(s):  
Giuseppe Caruso ◽  
Cristina Benatti ◽  
Nicolò Musso ◽  
Claudia G. Fresta ◽  
Annamaria Fidilio ◽  
...  

Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology.



2019 ◽  
Vol 19 (3) ◽  
pp. 100-108
Author(s):  
K. Thanzami ◽  
B.B. Kakoti ◽  
C. Lalremruati

The objective of this study was to investigate the antioxidant and anti-inflammatory activities of the chloroform extract of Combretum punctatum var squamosum by in vitro models. Antioxidant activity was determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power and lipid peroxidation assays. The phenolic and flavonoid contents of the extract were also assessed. The extract at different concentrations showed significant percent inhibition of DPPH and lipid peroxidation and high reducing power when compared with the standard. The extract also showed a significantly high content of phenolics and flavonoids. Anti-inflammatory activity was studied by inhibition of albumin denaturation and human red blood cell (HRBC) membrane stabilization methods. The extract at different concentrations showed significant percent inhibition of albumin denaturation and percent inhibition of haemolysis when compared with the standard. Thus, the result indicates that the chloroform extract exhibited significant potential on anti-inflammatory and antioxidant activities.



2016 ◽  
Vol 21 (4) ◽  
pp. NP11-NP17 ◽  
Author(s):  
Ayokunle O. Ademosun ◽  
Ganiyu Oboh ◽  
Fatai Bello ◽  
Peluola O. Ayeni

This study sought to investigate the anticholinesterase and antioxidative properties of quercetin and its glycosylated conjugate, rutin. The in vitro inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, inhibition of Fe2+-induced lipid peroxidation in rat’s brain homogenates, radicals scavenging, and Fe2+-chelating abilities of the flavonoids were investigated in vitro with concentrations of the samples ranging from 0.06 to 0.6 mM. Quercetin had significantly higher AChE and BChE inhibitory abilities than rutin. Quercetin also had stronger inhibition of Fe2+-induced lipid peroxidation in rat’s brain homogenates. Similarly, quercetin had higher radical scavenging abilities than rutin. Quercetin also had stronger Fe2+-chelating ability than rutin. The inhibition of cholinesterases and antioxidative properties are possible mechanisms by which the flavonoids can be used in the management of oxidative stress–induced neurodegeneration.



2010 ◽  
Vol 3 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Savita Verma ◽  
Manju Lata Gupta ◽  
Ajaswrata Dutta ◽  
Sanghmitra Sankhwar ◽  
Sandeep Kumar Shukla ◽  
...  

The study was planned to evaluate modulatory effect of aqueous extract ofPiper betleleaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.



Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 669 ◽  
Author(s):  
Amritpal Singh ◽  
Yu Fung Yau ◽  
Kin Sum Leung ◽  
Hani El-Nezami ◽  
Jetty Chung-Yung Lee

Oxidative stress plays an important role in the onset as well as the progression of inflammation. Without proper intervention, acute inflammation could progress to chronic inflammation, resulting in the development of inflammatory diseases. Antioxidants, such as polyphenols, have been known to possess anti-oxidative properties which promote redox homeostasis. This has encouraged research on polyphenols as potential therapeutics for inflammation through anti-oxidative and anti-inflammatory pathways. In this review, the ability of polyphenols to modulate the activation of major pathways of inflammation and oxidative stress, and their potential to regulate the activity of immune cells are examined. In addition, in this review, special emphasis has been placed on the effects of polyphenols on inflammation in the brain–liver–gut axis. The data derived from in vitro cell studies, animal models and human intervention studies are discussed.



Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Maddalena Sguizzato ◽  
Francesca Ferrara ◽  
Supandeep Singh Hallan ◽  
Anna Baldisserotto ◽  
Markus Drechsler ◽  
...  

Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.



Sign in / Sign up

Export Citation Format

Share Document