scholarly journals Natural Hydrogen Sulfide Donors from Allium sp. as a Nutraceutical Approach in Type 2 Diabetes Prevention and Therapy

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1581 ◽  
Author(s):  
Melino ◽  
Leo ◽  
Papajani

Type 2 diabetes mellitus (DM) is a socially relevant chronic disease with high prevalence worldwide. DM may lead to several vascular, macrovascular, and microvascular complications (cerebrovascular, coronary artery, and peripheral arterial diseases, retinopathy, neuropathy, and nephropathy), often accelerating the progression of atherosclerosis. Dietary therapy is generally considered to be the first step in the treatment of diabetic patients. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, in recent years, attention has been shifting to the effects and properties—that are still not completely known—of medicinal plants as valid and inexpensive therapeutic supports with limited side effects. In this review, we report the relevant effects of medicinal plants and nutraceuticals in diabetes. In particular, we paid attention to the organosulfur compounds (OSCs) present in plant extracts that due to their antioxidant, hypoglycemic, anti-inflammatory, and immunomodulatory effects, can contribute as cardioprotective agents in type 2 DM. OSCs derived from garlic (Allium sp.), due to their properties, can represent a valuable support to the diet in type 2 DM, as outlined in this manuscript based on both in vitro and in vivo studies. Moreover, a relevant characteristic of garlic OSCs is their ability to produce the gasotransmitter H2S, and many of their effects can be explained by this property. Indeed, in recent years, several studies have demonstrated the relevant effects of endogenous and exogenous H2S in human DM, including by in vitro and in vivo experiments and clinical trials; therefore, here, we summarize the effects and the underlying molecular mechanisms of H2S and natural H2S donors.

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Sara A. Litwak ◽  
Jibran A. Wali ◽  
Evan G. Pappas ◽  
Hamdi Saadi ◽  
William J. Stanley ◽  
...  

Pancreaticβ-cell loss induced by saturated free fatty acids (FFAs) is believed to contribute to type 2 diabetes. Previous studies have shown induction of endoplasmic reticulum (ER) stress, increased ubiquitinated proteins, and deregulation of the Bcl-2 family in the pancreas of type 2 diabetic patients. However, the precise mechanism ofβ-cell death remains unknown. In the present study we demonstrate that the FFA palmitate blocks the ubiquitin-proteasome system (UPS) and causes apoptosis through induction of ER stress and deregulation of Bcl-2 proteins. We found that palmitate and the proteasome inhibitor MG132 induced ER stress inβ-cells, resulting in decreased expression of the prosurvival proteins Bcl-2, Mcl-1, and Bcl-XL, and upregulation of the prodeath BH3-only protein PUMA. On the other hand, pharmacological activation of the UPS by sulforaphane ameliorated ER stress, upregulated prosurvival Bcl-2 proteins, and protectedβ-cells from FFA-induced cell death. Furthermore, transgenic overexpression of Bcl-2 protected islets from FFA-induced cell deathin vitroand improved glucose-induced insulin secretionin vivo. Together our results suggest that targeting the UPS and Bcl-2 protein expression may be a valuable strategy to preventβ-cell demise in type 2 diabetes.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Alessandra Giannella ◽  
Giulio Ceolotto ◽  
Claudia Maria Radu ◽  
Arianna Cattelan ◽  
Elisabetta Iori ◽  
...  

Abstract Background Patients with type 2 diabetes (T2DM) have a prothrombotic state that needs to be fully clarified; microparticles (MPs) have emerged as mediators and markers of this condition. Thus, we investigate, in vivo, in T2DM either with good (HbA1c ≤ 7.0%; GGC) or poor (HbA1c > 7.0%; PGC) glycemic control, the circulating levels of MPs, and in vitro, the molecular pathways involved in the release of MPs from platelets (PMP) and tested their pro-inflammatory effects on THP-1 transformed macrophages. Methods In 59 T2DM, and 23 control subjects with normal glucose tolerance (NGT), circulating levels of CD62E+, CD62P+, CD142+, CD45+ MPs were determined by flow cytometry, while plasma levels of ICAM-1, VCAM-1, IL-6 by ELISA. In vitro, PMP release and activation of isolated platelets from GGC and PGC were investigated, along with their effect on IL-6 secretion in THP-1 transformed macrophages. Results We found that MPs CD62P+ (PMP) and CD142+ (tissue factor-bearing MP) were significantly higher in PGC T2DM than GGC T2DM and NGT. Among MPs, PMP were also correlated with HbA1c and IL-6. In vitro, we showed that acute thrombin exposure stimulated a significantly higher PMP release in PGC T2DM than GGC T2DM through a more robust activation of PAR-4 receptor than PAR-1 receptor. Treatment with PAR-4 agonist induced an increased release of PMP in PGC with a Ca2+-calpain dependent mechanism since this effect was blunted by calpain inhibitor. Finally, the uptake of PMP derived from PAR-4 treated PGC platelets into THP-1 transformed macrophages promoted a marked increase of IL-6 release compared to PMP derived from GGC through the activation of the NF-kB pathway. Conclusions These results identify PAR-4 as a mediator of platelet activation, microparticle release, and inflammation, in poorly controlled T2DM.


2012 ◽  
Vol 56 (5) ◽  
pp. 285-290 ◽  
Author(s):  
Serdal Korkmaz ◽  
Abdulkerim Yilmaz ◽  
Gürsel Yildiz ◽  
Fatih Kiliçli ◽  
Serhat Içağasioğlu

OBJECTIVE: The rate of reduction of nocturnal blood pressure (NBP) is lesser than normal in patients with type 2 diabetes mellitus (type 2 DM). Hyperhomocysteinemia (HHC) disrupts vascular structure and function, no matter the underlying causes. The risk of development of vascular disease is greater in diabetic patients with hyperhomocysteinemia than in patients with normal homocystein levels. The aim of the study was to investigate whether there are differences of homocystein levels in dipper and non-dippers patients with type 2 DM. SUBJECTS AND METHODS: We compared 50 patients (33 females, 17 males) with type 2 DM and 35 healthy individuals (18 females, 17 males ) in a control group. Ambulatory blood pressure monitoring (ABPM) was performed and homocysteine levels were measured in all patients. RESULTS: We found that the percentage of non-dipper pattern was 72% in patients with type 2 DM and 57% in control group. In diabetic and control individuals, homocystein levels were higher in non-dipper (respectively 13.4 ± 8.1 µmol/L and 11.8 ± 5 µmol/L) than in dipper subjects (respectively, 11.8 ± 5.8 µmol/L and 10.1 ± 4.2 µmol/L), but there was no significant difference between the two groups (respectively, p = 0.545, p = 0.294). CONCLUSION: In both groups, homocystein levels were higher in non-dipper than in dipper participants, but there was no significant difference between the groups. High homocystein levels and the non-dipper pattern increases cardiovascular risk. Therefore, the relationship between nocturnal blood pressure changes and homocystein levels should be investigated in a larger study.


2005 ◽  
Vol 73 (9) ◽  
pp. 6055-6063 ◽  
Author(s):  
Matthew D. Mastropaolo ◽  
Nicholas P. Evans ◽  
Meghan K. Byrnes ◽  
Ann M. Stevens ◽  
John L. Robertson ◽  
...  

ABSTRACT Human diabetics frequently suffer delayed wound healing, increased susceptibility to localized and systemic infections, and limb amputations as a consequence of the disease. Lower-limb infections in diabetic patients are most often polymicrobial, involving mixtures of aerobic, facultative anaerobic, and anaerobic bacteria. The purpose of this study is to determine if these organisms contribute to synergy in polymicrobial infections by using diabetic mice as an in vivo model. The model was the obese diabetic mouse strain BKS.Cg-m +/+ Lepr db /J, a model of human type 2 diabetes. Young (5- to 6-week-old) prediabetic mice and aged (23- to 24-week-old) diabetic mice were compared. The mice were injected subcutaneously with mixed cultures containing Escherichia coli, Bacteroides fragilis, and Clostridium perfringens. Progression of the infection (usually abscess formation) was monitored by examining mice for bacterial populations and numbers of white blood cells at 1, 8, and 22 days postinfection. Synergy in the mixed infections was defined as a statistically significant increase in the number of bacteria at the site of injection when coinfected with a second bacterium, compared to when the bacterium was inoculated alone. E. coli provided strong synergy to B. fragilis but not to C. perfringens. C. perfringens and B. fragilis provided moderate synergy to each other but only in young mice. B. fragilis was anergistic (antagonistic) to E. coli in coinfections in young mice at 22 days postinfection. When age-matched nondiabetic mice (C57BLKS/J) were used as controls, the diabetic mice exhibited 5 to 35 times the number of CFU as did the nondiabetic mice, indicating that diabetes was a significant factor in the severity of the polymicrobial infections.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Catherine A Reardon ◽  
Amulya Lingaraju ◽  
Kelly Q Schoenfelt ◽  
Guolin Zhou ◽  
Ning-Chun Liu ◽  
...  

Type 2 diabetics have a higher risk for atherosclerosis, but the mechanisms underlying the increased risk are poorly understood. Macrophages, which are activated in type 2 diabetes (T2D) and have a role in all stages of atherogenesis, are an attractive link. Our hypothesis is that T2D promotes macrophage dysfunction to promote atherosclerosis. To investigate the relationship between T2D and macrophage dysfunction, we used a proteomics approach to identify dysregulated proteins secreted from peritoneal macrophages in a diet induced mouse model of obesity and insulin resistance in the absence of hypercholesterolemia. Twenty-seven T2D responsive proteins were identified that predict defects in many of the critical functions of macrophages in atherosclerosis (e.g. decreased apoE- cholesterol efflux; decreased MFGE8 – efferocytosis, increased MMP12- matrix degradation). The macrophages from lean and obese mice were not lipid loaded, but the obese macrophages accumulated significantly more cholesterol when exposed to high levels of atherogenic lipoproteins in vitro suggesting that dysregulation of the T2D responsive proteins in diabetic mice render macrophages more susceptible to cholesterol loading. Importantly, many of these same protein changes, which were present in atherosclerotic Ldlr-/- mice with T2D, were normalized when these mice were fed non-diabetogenic hypercholesterolemic diets. Thus, foam cell formation in the presence and absence of T2D produces distinct effects on macrophage protein levels, and hence function. Further, we identify IFNγ as a mediator of the T2D responsive protein dysfunction. IFNγ, but not other cytokines, insulin or glucose, promote the T2D responsive protein dysregulation and increased susceptibility to cholesterol accumulation in vitro and the dysregulation is not observed in macrophage foam cells obtained from obese, diabetic IFNγ receptor 1 knockout animals. We also demonstrate that IFNγ can target these proteins in arterial wall macrophages in vivo . These studies suggest that IFNγ is an important mediator of macrophage dysfunction in T2D that may contribute to the enhanced cardiovascular risk in these patients.


2019 ◽  
Vol 105 (4) ◽  
pp. e1549-e1560 ◽  
Author(s):  
Bénédicte Gaborit ◽  
Jean-Baptiste Julla ◽  
Samaher Besbes ◽  
Matthieu Proust ◽  
Clara Vincentelli ◽  
...  

Abstract Aims Recent trials provide conflicting results on the association between glucagon-like peptide 1 receptor agonists (GLP-1RA) and diabetic retinopathy (DR). The aim of the AngioSafe type 2 diabetes (T2D) study was to determine the role of GLP-1RA in angiogenesis using clinical and preclinical models. Methods We performed two studies in humans. In study 1, we investigated the effect of GLP-1RA exposure from T2D diagnosis on the severity of DR, as diagnosed with retinal imaging (fundus photography). In study 2, a randomized 4-week trial, we assessed the effect of liraglutide on circulating hematopoietic progenitor cells (HPCs), and angio-miRNAs. We then studied the experimental effect of Exendin-4, on key steps of angiogenesis: in vitro on human endothelial cell proliferation, survival and three-dimensional vascular morphogenesis; and in vivo on ischemia-induced neovascularization of the retina in mice. Results In the cohort of 3154 T2D patients, 10% displayed severe DR. In multivariate analysis, sex, disease duration, glycated hemoglobin (HbA1c), micro- and macroangiopathy, insulin therapy and hypertension remained strongly associated with severe DR, while no association was found with GLP-1RA exposure (o 1.139 [0.800–1.622], P = .47). We further showed no effect of liraglutide on HPCs, and angio-miRNAs. In vitro, we demonstrated that exendin-4 had no effect on proliferation and survival of human endothelial cells, no effect on total length and number of capillaries. Finally, in vivo, we showed that exendin-4 did not exert any negative effect on retinal neovascularization. Conclusions The AngioSafe T2D studies provide experimental and clinical data confirming no effect of GLP-1RA on angiogenesis and no association between GLP-1 exposure and severe DR.


2018 ◽  
Vol 46 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Zeeshan Ali ◽  
P. Charukeshi Chandrasekera ◽  
John J. Pippin

Obesity and type 2 diabetes mellitus (T2DM) have reached pandemic proportions worldwide, and considerable research efforts have been dedicated to investigating disease pathology and therapeutic options. The two hallmark features of T2DM, insulin resistance and pancreatic dysfunction, have been studied extensively by using various animal models. Despite the knowledge acquired from such models, particularly mechanistic discoveries that sometimes mimic human T2DM mechanisms or pathways, many details of human T2DM pathogenesis remain unknown, therapeutic options remain limited, and a cure has eluded research. Emerging human data have raised concern regarding inter-species differences at many levels (e.g. in gene regulation, pancreatic cytoarchitecture, glucose transport, and insulin secretion regulation), and the subsequent impact of these differences on the clinical translation of animal research findings. Therefore, it is important to recognise and address the translational gap between basic animal-based research and the clinical advances needed to prevent and treat T2DM. The purpose of this report is to identify some limitations of T2DM animal research, and to propose how greater human relevance and applicability of hypothesis-driven basic T2DM research could be achieved through the use of human-based data acquisition at various biological levels. This report addresses how in vitro, in vivo and in silico technologies could be used to investigate particular aspects of human glucose regulation. We do not propose that T2DM animal research has been without value in the identification of mechanisms, pathways, or potential targets for therapies, nor do we claim that human-based methods can provide all the answers. We recognise that the ultimate goal of T2DM animal research is to identify ways to advance the prevention, recognition and treatment of T2DM in humans, but postulate that this is where the use of animal models falls short, despite decades of effort. The best way to achieve this goal is by prioritising human-centred research.


Sign in / Sign up

Export Citation Format

Share Document