scholarly journals Metabolic Effects of the Sweet Protein MNEI as a Sweetener in Drinking Water. A Pilot Study of a High Fat Dietary Regimen in a Rodent Model

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2643
Author(s):  
Rosa Cancelliere ◽  
Serena Leone ◽  
Cristina Gatto ◽  
Arianna Mazzoli ◽  
Carmine Ercole ◽  
...  

Sweeteners have become integrating components of the typical western diet, in response to the spreading of sugar-related pathologies (diabetes, obesity and metabolic syndrome) that have stemmed from the adoption of unbalanced dietary habits. Sweet proteins are a relatively unstudied class of sweet compounds that could serve as innovative sweeteners, but their introduction on the food market has been delayed by some factors, among which is the lack of thorough metabolic and toxicological studies. We have tried to shed light on the potential of a sweet protein, MNEI, as a fructose substitute in beverages in a typical western diet, by studying the metabolic consequences of its consumption on a Wistar rat model of high fat diet-induced obesity. In particular, we investigated the lipid profile, insulin sensitivity and other indicators of metabolic syndrome. We also evaluated systemic inflammation and potential colon damage. MNEI consumption rescued the metabolic derangement elicited by the intake of fructose, namely insulin resistance, altered plasma lipid profile, colon inflammation and translocation of lipopolysaccharides from the gut lumen into the circulatory system. We concluded that MNEI could represent a valid alternative to fructose, particularly when concomitant metabolic disorders such as diabetes and/or glucose intolerance are present.

2017 ◽  
Vol 42 (2) ◽  
pp. 209-215 ◽  
Author(s):  
Natalia de las Heras ◽  
María Valero-Muñoz ◽  
Beatriz Martín-Fernández ◽  
Sandra Ballesteros ◽  
Antonio López-Farré ◽  
...  

Hypolipidemic and hypoglycemic properties of ginger in animal models have been reported. However, information related to the mechanisms and factors involved in the metabolic effects of ginger at a hepatic level are limited. The aim of the present study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of a hydroethanolic ginger extract (GE) in the liver of rats fed a high-fat diet (HFD). The study was conducted in male Wistar rats divided into the following 3 groups: (i) Rats fed a standard diet (3.5% fat), the control group; (ii) rats fed an HFD (33.5% fat); and (iii) rats fed an HFD treated with GE (250 mg·kg−1·day−1) for 5 weeks (HFD+GE). Plasma levels of glucose, insulin, lipid profile, leptin, and adiponectin were measured. Liver expression of glycerol phosphate acyltransferase (GPAT), cholesterol 7 alpha-hydroxylase, peroxisome proliferator-activated receptors (PPAR), PPARα and PPARγ, glucose transporter 2 (GLUT-2), liver X receptor, sterol regulatory element-binding protein (SREBP1c), connective tissue growth factor (CTGF), and collagen I was measured. Data were analyzed using a 1-way ANOVA, followed by a Newman−Keuls test if differences were noted. The study showed that GE improved lipid profile and attenuated the increase of plasma levels of glucose, insulin, and leptin in HFD rats. This effect was associated with a higher liver expression of PPARα, PPARγ, and GLUT-2 and an enhancement of plasma adiponectin levels. Furthermore, GE reduced liver expression of GPAT, SREBP1c, CTGF, and collagen I. The results suggest that GE might be considered as an alternative therapeutic strategy in the management of overweight and hepatic and metabolic−related alterations.


2020 ◽  
Vol 21 (20) ◽  
pp. 7582
Author(s):  
Jonatan Dassonvalle ◽  
Francisco Díaz-Castro ◽  
Camila Donoso-Barraza ◽  
Carlos Sepúlveda ◽  
Francisco Pino-de la Fuente ◽  
...  

Glucocorticoids (GCs) are critical regulators of energy balance. Their deregulation is associated with the development of obesity and metabolic syndrome. However, it is not understood if obesity alters the tissue glucocorticoid receptor (GR) response, and moreover whether a moderate aerobic exercise prevents the alteration in GR response induced by obesity. Methods: To evaluate the GR response in obese mice, we fed C57BL6J mice with a high-fat diet (HFD) for 12 weeks. Before mice were sacrificed, we injected them with dexamethasone. To assess the exercise role in GR response, we fed mice an HFD and subjected them to moderate aerobic exercise three times a week. Results: We found that mice fed a high-fat diet for 12 weeks developed hepatic GC hypersensitivity without changes in the gastrocnemius or epididymal fat GR response. Therefore, moderate aerobic exercise improved glucose tolerance, increased the corticosterone plasma levels, and prevented hepatic GR hypersensitivity with an increase in epididymal fat GR response. Conclusion: Collectively, our results suggest that mice with HFD-induced obesity develop hepatic GR sensitivity, which could enhance the metabolic effects of HFD in the liver. Moreover, exercise was found to be a feasible non-pharmacological strategy to prevent the deregulation of GR response in obesity.


2021 ◽  
Vol 3 (2) ◽  
pp. 69-74
Author(s):  
Cristian Baldini ◽  

We continuously underestimate the eating process: food and cooking methods play a pivotal role in our health. According to the Dietary Guidelines for Americans (DGA), more than 117 million American adults have one or more preventable chronic diseases, many of which are related to poor quality eating patterns and physical inactivity. Despite the usual belief about fat in the diet, it has shown that fat has a uniquely positive effect on blood lipid concentrations and cardiovascular risk factors. A low-carb/high-fat/fried-food (LCHFFF) diet has shown to be one of the best natural treatments in lipid profile and glycemia in a patient with metabolic syndrome.


2017 ◽  
Vol 312 (4) ◽  
pp. H742-H751 ◽  
Author(s):  
Ian Hunter ◽  
Amanda Soler ◽  
Gregory Joseph ◽  
Brenda Hutcheson ◽  
Chastity Bradford ◽  
...  

Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet.


Author(s):  
Pedram Shokouh ◽  
Per Bendix Jeppesen ◽  
Kjeld Hermansen ◽  
Christoffer Laustsen ◽  
Hans Stødkilde-Jørgensen ◽  
...  

Literature is inconsistent as to how coffee affects the features of the metabolic syndrome (MetS), and which bioactive compounds are responsible for its metabolic effects. We aimed to compare the in-vivo effects of unfiltered coffee with a selected mixture of its compounds on diet-induced MetS. 24 male Sprague-Dawley rats were fed a high-fat (35% W/W) food plus 20% W/W fructose in drinking water for 14 weeks, and were randomized into three groups: control, coffee, or nutraceuticals (5-O-caffeoylquinic acid, caffeic acid, and trigonelline). Coffee or nutraceuticals were provided in drinking water in a dosage equal to 4 cups/day in a human. Compared to the controls, only coffee supplementation decreased total food intake, weight gain, and estimated average plasma glucose. Surrogate measures of insulin resistance (fasting insulin, HOMA-IR, and oral glucose tolerance) were improved at endpoint in the coffee group. Circulating triglyceride levels were also reduced by coffee. Histopathological and quantitative measurements indicated lower grades of liver steatosis after long-term coffee consumption. In conclusion, a combination of phenolic acids and trigonelline was not as effective as coffee per se in improving the components of the MetS. This points to the role of other coffee chemicals and a potential synergism between compounds.


2019 ◽  
Vol 217 ◽  
pp. 18-25
Author(s):  
Alessandro R. Nascimento ◽  
Fabiana Gomes ◽  
Marcus V. Machado ◽  
Cassiano Gonçalves-de-Albuquerque ◽  
Pascal Bousquet ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2431
Author(s):  
Fernando E. García-Arroyo ◽  
Guillermo Gonzaga-Sánchez ◽  
Edilia Tapia ◽  
Itzel Muñoz-Jiménez ◽  
Lino Manterola-Romero ◽  
...  

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


2018 ◽  
Vol 25 (1) ◽  
pp. 11-21
Author(s):  
◽  
Eni Harmayani ◽  

AbstractBackground and Aims: Diet with a high fat and high sugar is associated with an increased incindence of the metabolic syndrome. Kefir has been known as a natural probiotic, while glucomannan from porang (Amorphophallus oncophyllus) tuber was demonstrated as prebiotic in vivo. Probiotics and prebiotics can be used adjuvant nutritional therapy for metabolic syndrome. The aim of this study was to evaluate the effect of goat milk kefir supplemented with porang glucomannan on the lipid profile and haematological parameters in rats fed with a high-fat/high-fructose (HFHF) diet.Materials and methods: Rats were divided into 5 groups: normal diet; HFHF; HFHF + kefir; HFHF + kefir + glucomannan; and HFHF + simvastatin.Results: There were significant differences before and after treatment in triglycerides and total cholesterol in HFHF + kefir+glucomannan group. The HFHF rats administered kefir with or without glucomannan had higher levels of lymphocytes and lower neutrophils compared to HFHF group (p<0.05). Only goat milk kefir without glucomannan proved to reduce platelets number.Conclusion: Goat milk kefir supplemented with porang glucomannan could improve the health of rats fed high-fat/high-fructose, by decreasing plasma triglycerides, total cholesterol, and their immunomodulatory effect by decreasing number of neutrophils and increasing the lymphocytes. Especially for goat milk kefir had antithrombotic activity which important to prevent cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document