scholarly journals Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet

2017 ◽  
Vol 312 (4) ◽  
pp. H742-H751 ◽  
Author(s):  
Ian Hunter ◽  
Amanda Soler ◽  
Gregory Joseph ◽  
Brenda Hutcheson ◽  
Chastity Bradford ◽  
...  

Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet.

2018 ◽  
Vol 315 (6) ◽  
pp. H1713-H1723 ◽  
Author(s):  
Lia E. Taylor ◽  
Ellen E. Gillis ◽  
Jacqueline B. Musall ◽  
Babak Baban ◽  
Jennifer C. Sullivan

Evidence supports a sex difference in the impact of a high-fat diet (HFD) on cardiovascular outcomes, with male experimental animals exhibiting greater increases in blood pressure (BP) than female experimental animals. The immune system has been implicated in HFD-induced increases in BP, and there is a sex difference in T-cell activation in hypertension. The goal of this study was to determine the impact of HFD on BP and aortic and renal T cell profiles in male and female Dahl salt-sensitive (DSS) rats. We hypothesized that male DSS rats would have greater increases in BP and T cell infiltration in response to a HFD compared with female DSS rats. BP was measured by tail-cuff plethysmography, and aortic and renal T cells were assessed by flow cytometric analysis in male and female DSS rats on a normal-fat diet (NFD) or HFD from 12 to 16 wk of age. Four weeks of HFD increased BP in male and female DSS rats to a similar degree. Increases in BP were accompanied by increased percentages of CD4+ T cells and T helper (Th)17 cells in both sexes, although male rats had more proinflammatory T cells. Percentages of renal CD3+ and CD4+ T cells as well as Th17 cells were increased in both sexes by the HFD, although the increase in CD3+ T cells was greater in male rats. HFD also decreased the percentage of aortic and renal regulatory T cells in both sexes, although female rats maintained more regulatory T cells than male rats regardless of diet. In conclusion, both male and female DSS rats exhibit BP sensitivity to a HFD; however, the mechanisms mediating HFD-induced increases in BP may be distinct as male rats exhibit greater increases in the percentage of proinflammatory T cells than female rats. NEW & NOTEWORTHY Our study demonstrates that male and female Dahl salt-sensitive rats exhibit similar increases in blood pressure to a high-fat diet and an increase in aortic and renal T cells. These results are in contrast to studies showing that female rats remain normotensive and/or upregulate regulatory T cells in response to hypertensive stimuli compared with male rats. Our data suggest that a 4-wk high-fat diet has sex-specific effects on the T cell profile in Dahl salt-sensitive rats.


2011 ◽  
Vol 47 (2) ◽  
pp. 129-143 ◽  
Author(s):  
Carolina Gustavsson ◽  
Tomoyoshi Soga ◽  
Erik Wahlström ◽  
Mattias Vesterlund ◽  
Alireza Azimi ◽  
...  

Male Zucker diabetic fatty (mZDF) rats spontaneously develop type 2 diabetes, whereas females only become diabetic when fed a diabetogenic high-fat diet (high-fat-fed female ZDF rat, HF-fZDF). The aim of this study was to investigate if differences in liver functions could provide clues to this sex difference. Non-diabetic obese fZDF rats were compared with either mZDF or HF-fZDF regarding hepatic molecular profiles, to single out those components that might be protective in the females. High-fat feeding in fZDF led to enhanced weight gain, increased blood glucose and insulin levels, reduced insulin sensitivity and a trend towards reduced glucose tolerance, indicative of a prediabetic state. mZDF rats were diabetic, with low levels of insulin, high levels of glucose, reduced insulin sensitivity and impaired glucose tolerance. Transcript profiling and capillary electrophoresis time-of-flight mass spectrometry were used to indentify hepatic transcripts and metabolites that might be related to this. Many diet-induced alterations in transcript and metabolite levels in female rats were towards a ‘male-like’ phenotype, including reduced lipogenesis, increased fatty acid (FA) oxidation and increased oxidative stress responses. Alterations detected at the level of hepatic metabolites, indicated lower capacity for glutathione (GSH) production in male rats, and higher GSH turnover in females. Taken together, this could be interpreted as if anabolic pathways involving lipogenesis and lipid output might limit the degree of FA oxidation and oxidative stress in female rats. Together with a greater capacity to produce GSH, these hepatic sex differences might contribute to the sex-different development of diabetes in ZDF rats.


2016 ◽  
Vol 52 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Gabriela Cristina Schmitt ◽  
Marcelo Dutra Arbo ◽  
Andréia Louise Lorensi ◽  
Ana Laura Bemvenuti Jacques ◽  
Sabrina Nunes do Nascimento ◽  
...  

ABSTRACT The association of p-synephrine, ephedrine, salicin, and caffeine in dietary supplements and weight loss products is very common worldwide, even though ephedrine has been prohibited in many countries. The aim of this study was to evaluate a 28-day oral exposure toxicity profile of p-synephrine, ephedrine, salicin, and caffeine mixture (10:4:6:80 w/w respectively) in male and female Wistar rats. Body weight and signs of toxicity, morbidity, and mortality were observed daily. After 28 days, animals were euthanized and blood collected for hematological, biochemical, and oxidative stress evaluation. No clinical signs of toxicity, significant weight loss or deaths occurred, nor were there any significant alterations in hematological parameters. Biochemical and oxidative stress biomarkers showed lipid peroxidation, and hepatic and renal damage (p < 0.05; ANOVA/Bonferroni) in male rats (100 and 150 mg/kg) and a reduction (p < 0.05; ANOVA/Bonferroni) in glutathione (GSH) levels in all male groups. Female groups displayed no indications of oxidative stress or biochemical alterations. The different toxicity profile displayed by male and female rats suggests a hormonal influence on mixture effects. Results demonstrated that the tested mixture can alter oxidative status and promote renal and hepatic damages.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A537-A537
Author(s):  
Shiori Minabe ◽  
Kinuyo Iwata ◽  
Hitoshi Ozawa

Abstract Metabolic stress resulting from a nutrient excess causes infertility in both sexes. Kisspeptin-neurokinin B-dynorphin (KNDy) neurons in the arcuate nucleus (ARC) have been suggested to be key players in reproduction via direct stimulation of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. In this study, we investigated the sex differences in the effects of a high-fat diet (HFD) on KNDy-associated gene expression in the ARC to determine the pathogenic mechanism underlying obesity-induced infertility. Wistar-Imamichi strain male and female rats (7 weeks of age) were fed either a standard diet (10% calories from fat) or high-fat diet (45% calories from fat) for 4 months. In male rats, the HFD caused a significant suppression of Kiss1(encoding kisspeptin), Tac3(encoding neurokinin B), and Pdyn(encoding dynorphin A) gene expression in the ARC, resulting in a decrease in plasma luteinizing hormone (LH) levels. In female rats, 58% of the HFD-fed female rats exhibited irregular estrous cycles, while the other rats showed regular cycles. LH pulses were found, and the numbers of ARC Kiss1-,Tac3-, and Pdyn-expressing cells were high in control animals and almost allHFD-fed female rats, but two out of 10 rats showed profound HFD-induced suppression of LH pulse frequency and reduction in these cells. No statistical differences in LH secretion or ARC KNDy gene expression were observed between HFD-fed and control female rats. Additionally, the number of Gnrh1-expressing cells in the preoptic area was comparable between the groups in both sexes. Our findings revealed that HFD-fed male rats showed KNDy-dependent infertility, while irregular menstruation was mainly induced by KNDy-independent pathways during the incipient stage of obese infertility in female rats. Taken together, hypothalamic kisspeptin neurons in male rats may be susceptible to HFD-induced obesity compared with those in female rats.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 367-367
Author(s):  
Anil K Chauhan ◽  
Chintan Gandhi ◽  
Mohammad Moshahid Khan ◽  
Steven R. Lentz

Abstract Abstract 367 Background and objective: ADAMTS13 (A Disintegrin-like And Metalloprotease with Thrombospondin type I repeats-13) plays a pivotal role in preventing spontaneous thrombosis in the microvasculature by cleaving hyperactive ultra large von Willebrand factor (ULVWF) multimers into smaller, less active multimers. Severe deficiency of ADAMTS13 in humans causes thrombotic thrombocytopenic purpura (TTP) and numerous epidemiological studies have demonstrated associations between decreased ADAMTS13 activity and adverse disease outcome in patients with systemic inflammation. It remains unknown, however, whether reduced ADAMTS13 activity plays a direct pathogenic role in inflammatory diseases or rather simply serves as an inflammation-associated marker. We hypothesized that deficiency of ADAMTS13 enhances inflammation and accelerates the development of early atherosclerotic plaques. Results: Using intravital fluorescence microscopy, we show that the number of adherent leukocytes (adherent for > 60 s) was increased approximately four-fold at the carotid sinus, a lesion prone site, of Adamts13−/−/ApoE−/− mice (Mean ± SEM = 37 ± 6) as compared to ApoE−/− mice (Mean ± SEM = 9 ± 4, P <0.01) fed a high-fat Western diet. Interestingly, intravital microscopy showed that 100% (10/10) of the Adamts13−/−/ApoE−/− mice had plaque that occluded the carotid sinus by approximately 70–80%, whereas only 20% (2/10) of the ApoE−/− mice had plaque at the carotid sinus, and the plaques were smaller in size than those in Adamts13−/−/ApoE−/− mice (P=0.0003). Next, we determined the effects of ADAMTS13 deficiency on atherosclerotic plaque formation in the aorta and aortic sinus. We compared the extent of atherosclerosis in whole aortae stained with Oil Red O and en face lesion area measured by morphometry. Both Adamts13−/−/ApoE−/− male and female mice demonstrated significantly larger lesions in the descending aorta (P<0.01), arch of the aorta (P<0.001), and total aorta (P<0.0001) compared to ApoE−/− mice fed a high-fat Western diet. Next, we quantified the corss-sectional area of lesions in the aortic sinus using the VerHoeffs/Van Gieson method. We observed a two-fold increase in the mean lesion area in the aortic sinus of both male and female Adamts13−/−/ApoE−/− mice (P<0.01) compared to ApoE−/− mice. Macrophage content (% of total lesion area), as quantitated by immunohistochemistry, was significantly elevated in the aortic root lesions of Adamts13−/−/ApoE−/− mice compared to ApoE−/− mice, suggesting that exacerbated atherosclerosis was due to increased inflammation. Adamts13−/−/ApoE−/− mice fed a normal chow diet also demonstrated accelerated atherosclerotic plaque formation compared to ApoE−/− mice. Total cholesterol and triglyceride levels were similar in Adamts13−/−/ApoE−/− and ApoE−/− mice fed a high-fat Western diet or normal chow diet. Conclusions: These findings unravel a new functional role for the anti-thrombotic enzyme ADAMTS13 in reducing excessive inflammation and plaque formation during atherosclerosis. Disclosures: Lentz: Celgene: Ownership interest; Novo Nordisk: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2002 ◽  
Vol 227 (9) ◽  
pp. 837-842 ◽  
Author(s):  
Jérôme Busserolles ◽  
Andrzej Mazur ◽  
Elyett Gueux ◽  
Edmond Rock ◽  
Yves Rayssiguier

Metabolic syndrome is more prevalent in men than in women. In an experimental dietary model of metabolic syndrome, the high-fructose–fed rat, oxidative stress has been observed in males. Given that estradiol has been documented to exert an antioxidant effect, we investigated whether female rats were better protected than males against the adverse effects of a high-sucrose diet, and we studied the influence of hormonal status in female rats. Males and females were first fed a sucrose-based or starch-based diet for 2 weeks. In the males, the plasma triglyceride (TG)-raising effect of sucrose was accompanied by significantly lowered plasma α-tocopherol and a significantly lowered α-tocopherol/TG ratio (30%), suggesting that vitamin E depletion may predispose lipoproteins to subsequent oxidative stress. In males, after exposure of heart tissue homogenate to iron-induced lipid peroxidation, thiobarbituric reactive substances were significantly higher in the sucrose-fed than in the starch-fed rats. In contrast, in sucrose-fed females, neither a decrease in vitamin E/TG ratio nor an increased susceptibility of heart tissue to peroxidation was observed, despite both a significantly decreased heart superoxide dismutase activity (14%) and a significant 3-fold increase in plasma nitric oxide concentration compared with starch-fed females. The influence of hormonal status in female rats was then assessed using intact, ovariectomized, or estradlol-supplemented ovariectomized female rats fed the sucrose or starch diet for 2 weeks. After exposure of heart tissue to iron-induced lipid peroxidation, higher susceptibility to peroxidation was found only in ovariectomized females fed the sucrose diet compared with the starch group and not in intact females or ovariectomized females supplemented with estradiol. Thus, estrogens, by their effects on antioxidant capacity, might explain the sexual difference in the pro-oxidant effect of sucrose diet resulting in metabolic syndrome in rats.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 804
Author(s):  
Adéla Kábelová ◽  
Hana Malínská ◽  
Irena Marková ◽  
Olena Oliyarnyk ◽  
Blanka Chylíková ◽  
...  

Ellagic acid, a natural substance found in various fruits and nuts, was previously shown to exhibit beneficial effects towards metabolic syndrome. In this study, using a genetic rat model of metabolic syndrome, we aimed to further specify metabolic and transcriptomic responses to ellagic acid treatment. Adult male rats of the SHR-Zbtb16Lx/k.o. strain were fed a high-fat diet accompanied by daily intragastric gavage of ellagic acid (50 mg/kg body weight; high-fat diet–ellagic acid (HFD-EA) rats) or vehicle only (high-fat diet–control (HFD-CTL) rats). Morphometric and metabolic parameters, along with transcriptomic profile of liver and brown and epididymal adipose tissues, were assessed. HFD-EA rats showed higher relative weight of brown adipose tissue (BAT) and decreased weight of epididymal adipose tissue, although no change in total body weight was observed. Glucose area under the curve, serum insulin, and cholesterol levels, as well as the level of oxidative stress, were significantly lower in HFD-EA rats. The most differentially expressed transcripts reflecting the shift induced by ellagic acid were detected in BAT, showing downregulation of BAT activation markers Dio2 and Nr4a1 and upregulation of insulin-sensitizing gene Pla2g2a. Ellagic acid may provide a useful nutritional supplement to ameliorate features of metabolic syndrome, possibly by suppressing oxidative stress and its effects on brown adipose tissue.


2021 ◽  
Vol 22 (5) ◽  
pp. 2431
Author(s):  
Fernando E. García-Arroyo ◽  
Guillermo Gonzaga-Sánchez ◽  
Edilia Tapia ◽  
Itzel Muñoz-Jiménez ◽  
Lino Manterola-Romero ◽  
...  

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Sign in / Sign up

Export Citation Format

Share Document