scholarly journals Affective and Enjoyment Responses to Short-Term High-Intensity Interval Training with Low-Carbohydrate Diet in Overweight Young Women

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 442 ◽  
Author(s):  
Zhaowei Kong ◽  
Mingzhu Hu ◽  
Yang Liu ◽  
Qingde Shi ◽  
Liye Zou ◽  
...  

Low-carbohydrate diets (LCs) seem effective on weight reduction and maintenance. However, the affect and enjoyment of exercise during LCs is not clear. The purpose of the present study was to compare the psychological responses to high-intensity interval training (HIIT) and to moderate-intensity continuous training (MICT) during the consumption of a 4-week LC diet in overweight young women. With LCs (~10% carbohydrate, 65%–70% fat, 20%–25% protein), forty-three eligible women (age: 20.9 ± 3.1 years; body weight: 65.8 ± 8.2 kg) were randomly assigned to one of three groups: HIIT (10 sets of 6 s all-out cycling interspersed with 9 s of rest), MICT (30 min cycling at 50%–60% of peak oxygen consumption, V̇O2peak) or no-exercise controls (CON). Anthropometric indices and V̇O2peak were measured pre- and post-training. Feeling Scale (FS), Felt Arousal Scale (FAS), Exercise Enjoyment Scale (EES), and Physical Activity Enjoyment Scale (PACES) scores were collected before and immediately after each training session throughout the study. After intervention, all three groups reduced by more than 2.5 kg of body weight whereas both exercise groups improved ~15% V̇O2peak. Participants in the HIIT and MICT group exhibited similar affect points as indicated by FS and FAS. Post-exercise enjoyment scores in PACES were lower in HIIT (73–78 points) than MICT (83–87 points) despite similarly positive responses being observed in EES (corresponding to ~4 points of a 7-point scale). Short-term LCs were effective in weight loss and exercise training had an additive improvement on cardiorespiratory fitness. The overweight young women had similar affect valence, arousal levels, and comparable pleasurable feelings to HIIT and MICT with LCs. Furthermore, as indicated by PACES, MICT was more enjoyable which may elicit better adherence, whereas HIIT with LCs seems to be more arduous despite its time-efficiency.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaowei Kong ◽  
Shengyan Sun ◽  
Min Liu ◽  
Qingde Shi

This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women.Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption (V˙O2peak) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% ofV˙O2peak.V˙O2peak, body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training.Results. Both exercise groups achieved significant improvements inV˙O2peak(+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention (p=0.062). The rating of perceived exertion in MICT was higher than that in HIIT (p=0.042).Conclusion. Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.


2008 ◽  
Vol 33 (6) ◽  
pp. 1124-1131 ◽  
Author(s):  
Sean C. Forbes ◽  
Jill M. Slade ◽  
Ronald A. Meyer

Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4–6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.


Cardiology ◽  
2018 ◽  
Vol 141 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Anneke van Biljon ◽  
Andrew J. McKune ◽  
Katrina D. DuBose ◽  
Unathi Kolanisi ◽  
Stuart J. Semple

Objectives: This study aimed to investigate the impact of 3 isocaloric exercise programs on cardiac autonomic nervous system (ANS) functioning in children. Methods: One hundred nine children (39% boys and 61% girls) aged 10–13 years (mean 11.07 ± 0.81) were conveniently assigned to 1 of 4 groups as follows: Moderate-intensity continuous training (MICT; n = 29) at 65–70% of the predicted maximum heart rate (MHR), High-intensity interval training (HIIT; n = 29) at > 80% of the predicted MHR, HIIT and MICT combined on alternate weeks (ALT; n = 27), and a control group (n = 24). Morning ANS activity was assessed via analysis of heart rate variability (HRV), with the patient in supine position for 10 min, before and after the exercise intervention. Data Analysis: A 2-way analysis of variance was used to evaluate the effects of training on all HRV parameters (p < 0.05/4 = 0.0125). Results: After 5 weeks of training, significant improvements were observed for ln of the standard deviation of normal-to-normal intervals (p < 0.0001), ln of the root mean square of successive difference (p < 0.0001), and ln of standard deviation 1 (p < 0.0001), with superior results reported in the HIIT group (effect size [ES] = 2.22, 2.69, and 2.69) compared with the MICT (ES = 1.67, 1.75, and 1.75) and ALT (ES = 0.87, 1.06, and 1.06) groups, respectively. Conclusion: Short-term HIIT seems to induce superior alterations in cardiac ANS activity compared to MICT and ALT in children through enhanced vagal activity.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y.C Huang ◽  
J.S Wang

Abstract Background Interventricular interactions in increased RV afterload such as hypoxia stress, which affects both synchrony and function in an in-series effect as well as a parallel effect arising from leftward septal shift. Improved myocardial contractility is a critical circulatory adaptation to exercise training, however, the types of exercise that can improve interventricular synchrony under hypoxic environment have not yet been established. Purpose This study investigates how high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) influence on the interventricular synchrony in response to normobaric hypoxia in sedentary men. Methods Fifty-four sedentary males were randomized to perform HIIT (3-minute intervals at 40% and 80% VO2peak, n=18), MICT (sustained 60% VO2peak, n=18) for 30 minutes/day, 5 days/week for 6 weeks and the control group (CTL, n=18). Synchrony measurements at apical 4-chamber view including (1) intra-delay, the difference in time to peak strain (TS) between segmental septal-to-lateral ventricular or atrial walls, and (2) inter-delay, the difference in TS between RV or RA free wall and LV or LA lateral wall. The data were acquired by 2-dimensional speckle tracking echocardiography at rest under hypoxic condition (12% FIO2, simulated an altitude of 4,500 m) before and after the interventions. Results HIIT had significantly elevated radial and longitudinal strains in both LA and LV (p&lt;0.05). As the results showed, HIIT was superior than MICT in improvement of longitudinal intra-delay of LV; furthermore, only HIIT simultaneously ameliorated both radial and longitudinal synchrony at apex. Although the HIIT enhanced intraventricular synchrony in both motions, whereas the interventricular synchrony deteriorated at radial motion. In atrium synchrony, although both groups augmented the intra-LA synchrony, however, only HIIT reduced the inter-delay between LA and RA at the roof motion. LV end-systolic volume (ESV) significantly correlated with the longitudinal inter-delay of ventricle (r=−0.53, p&lt;0.05), whereas the LV end-diastolic volume (EDV) correlated with the inter-delay of atrium in roof motion (r=0.40, p&lt;0.05). Conclusion We found differences between HIIT and MICT in segmental intra- and inter- synchrony. HIIT enhanced both ventricular or atrial synchrony, and further increased the EDV coupled with decreased ESV. These findings give new insight into cardiac adaptation to difference endurance training and the long-term impact of such changes warrants future study in cardiac diseases. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): National Science Council of Taiwan


Sign in / Sign up

Export Citation Format

Share Document