scholarly journals Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis

Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2021 ◽  
Author(s):  
María Aguilar-Ballester ◽  
Andrea Herrero-Cervera ◽  
Ángela Vinué ◽  
Sergio Martínez-Hervás ◽  
Herminia González-Navarro

Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Fangyuan Zhang ◽  
Brittany Macshane ◽  
Ryan Searcy ◽  
Zuyi Huang

Cholesterol is an essential component of eukaryotic cellular membranes. It is also an important precursor for making other molecules needed by the body. Cholesterol homeostasis plays an essential role in human health. Having high cholesterol can increase the chances of getting heart disease. As a result of the risks associated with high cholesterol, it is imperative that studies are conducted to determine the best course of action to reduce whole body cholesterol levels. Mathematical models can provide direction on this. By examining existing models, the suitable reactions or processes for drug targeting to lower whole-body cholesterol can be determined. This paper examines existing models in the literature that, in total, cover most of the processes involving cholesterol metabolism and transport, including: the absorption of cholesterol in the intestine; the cholesterol biosynthesis in the liver; the storage and transport of cholesterol between the intestine, the liver, blood vessels, and peripheral cells. The findings presented in these models will be discussed for potential combination to form a comprehensive model of cholesterol within the entire body, which is then taken as an in-silico patient for identifying drug targets, screening drugs, and designing intervention strategies to regulate cholesterol levels in the human body.


2022 ◽  
pp. 1-27
Author(s):  
Lydia Qian ◽  
Amanda B. Chai ◽  
Ingrid C. Gelissen ◽  
Andrew J. Brown

The cholesterol is a vital component of cell membranes and myelin sheaths, and a precursor for essential molecules such as steroid hormones. In humans, cholesterol is partially obtained through the diet, while the majority is synthesized in the body, primarily in the liver. However, the limited exchange between the central nervous system and peripheral circulation, due to the presence of the blood-brain barrier, necessitates cholesterol in the brain to be exclusively acquired from local de novo synthesis. This cholesterol is reutilized efficiently, rendering a much slower overall turnover of the compound in the brain as compared with the periphery. Furthermore, brain cholesterol is regulated independently from peripheral cholesterol. Numerous enzymes, proteins, and other factors are involved in cholesterol synthesis and metabolism in the brain. Understanding the unique mechanisms and pathways involved in the maintenance of cholesterol homeostasis in the brain is critical, considering perturbations to these processes are implicated in numerous neurodegenerative diseases. This review focuses on the developing understanding of cholesterol metabolism in the brain, discussing the sites and processes involved in its synthesis and regulation, as well as the mechanisms involved in its distribution throughout, and elimination from, the brain.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vijay R. Varma ◽  
H. Büşra Lüleci ◽  
Anup M. Oommen ◽  
Sudhir Varma ◽  
Chad T. Blackshear ◽  
...  

AbstractThe role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


2016 ◽  
Vol 116 (09) ◽  
pp. 565-577 ◽  
Author(s):  
Gemma Brufau ◽  
Marion J. J. Gijbels ◽  
Ine M. J. Wolfs ◽  
Saskia van der Velden ◽  
Chantal C. H. Pöttgens ◽  
...  

SummaryInflammatory responses and cholesterol homeostasis are interconnected in atherogenesis. Interleukin (IL)-10 is an important anti-inflammatory cytokine, known to suppress atherosclerosis development. However, the specific cell types responsible for the atheroprotective effects of IL-10 remain to be defined and knowledge on the actions of IL-10 in cholesterol homeostasis is scarce. Here we investigated the functional involvement of myeloid IL-10-mediated atheroprotection. To do so, bone marrow from IL-10 receptor 1 (IL-10R1) wild-type and myeloid IL-10R1-deficient mice was transplanted to lethally irradiated female LDLR-/- mice. Hereafter, mice were given a high cholesterol diet for 10 weeks after which atherosclerosis development and cholesterol metabolism were investigated. In vitro, myeloid IL-10R1 deficiency resulted in a pro-inflammatory macrophage phenotype. However, in vivo significantly reduced lesion size and severity was observed. This phenotype was associated with lower myeloid cell accumulation and more apoptosis in the lesions. Additionally, a profound reduction in plasma and liver cholesterol was observed upon myeloid IL-10R1 deficiency, which was reflected in plaque lipid content. This decreased hypercholesterolaemia was associated with lowered very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) levels, likely as a response to decreased intestinal cholesterol absorption. In addition, IL-10R1 deficient mice demonstrated substantially higher faecal sterol loss caused by increased non-biliary cholesterol efflux. The induction of this process was linked to impaired ACAT2-mediated esterification of liver and plasma cholesterol. Overall, myeloid cells do not contribute to IL-10-mediated atheroprotection. In addition, this study demonstrates a novel connection between IL-10-mediated inflammation and cholesterol homeostasis in atherosclerosis. These findings make us reconsider IL-10 as a beneficial influence on atherosclerosis.Supplementary Material to this article is available online at www.thrombosis-online.com.


2021 ◽  
Author(s):  
Victoria Emily Barbosa Hipolito

Cells are exposed to diverse extracellular and intracellular cues, and coopt subcellular responses depending on their cellular state and functional demand; including upregulating signalling pathways or adapting organelle function and physiology. The immune system is a tightly regulated cohort of specialized cells with heterogeneous functions. Phagocytes, a type of immune cell, are challenged with disparate environmental stimuli and can adapt intracellularly to promote immunity. Due to their cellular plasticity, we aim to understand the molecular machinery that controls organelle identity and adaptation in immune cells, when challenged with immunostimulatory agents. First, we used a long tubular phagocytic cup, which provides the spatiotemporal resolution necessary to study the stages of phagocytosis. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the growing cup. Surprisingly, the early endosomal lipid, phosphatidylinositol-3-phosphate [PtdIns(3)P] persisted. We determined a novel pH-based mechanism that induces the dissociation of the Vps34 Class III phosphatidylinositol-3- kinase from tubular cups as they progressively acidify, when reaching 20 µm in length or upon phagosome closure. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for its turnover by PIKfyve. Given that PtdIns(3)P dependent signalling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes. Additionally, we examined how lysosomes, a kingpin organelle essential for pathogen killing, and antigen processing and presentation, adapt in response to phagocyte activation. During phagocyte activation, lysosomes are remodelled from dozens of globular structures to a tubular network, in a process that requires the PI3K-AKT-mTOR signalling pathway. We showed that lysosome tubulation is coupled with an increase in volume and holding capacity. Lysosome remodelling was dependent on de novo synthesis of lysosomal proteins, but independent of TFEB and TFE3 transcription factors, known to scale-up lysosome biogenesis. We demonstrate a novel mechanism of acute organelle expansion via mTORC1-S6K-4E-BP-dependent increase in lysosomal mRNA translation. This process was necessary for efficient and rapid antigen presentation to T-cells by dendritic cells (DCs). Moreover, lysosome remodelling was conserved in DCs activated with select adjuvants, additives used in vaccines to boost efficacy, providing evidence for its possible clinical applicability. Together, we have identified two novel mechanisms controlling organelle identity and adaptation in immune cells.


2021 ◽  
Author(s):  
Victoria Emily Barbosa Hipolito

Cells are exposed to diverse extracellular and intracellular cues, and coopt subcellular responses depending on their cellular state and functional demand; including upregulating signalling pathways or adapting organelle function and physiology. The immune system is a tightly regulated cohort of specialized cells with heterogeneous functions. Phagocytes, a type of immune cell, are challenged with disparate environmental stimuli and can adapt intracellularly to promote immunity. Due to their cellular plasticity, we aim to understand the molecular machinery that controls organelle identity and adaptation in immune cells, when challenged with immunostimulatory agents. First, we used a long tubular phagocytic cup, which provides the spatiotemporal resolution necessary to study the stages of phagocytosis. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the growing cup. Surprisingly, the early endosomal lipid, phosphatidylinositol-3-phosphate [PtdIns(3)P] persisted. We determined a novel pH-based mechanism that induces the dissociation of the Vps34 Class III phosphatidylinositol-3- kinase from tubular cups as they progressively acidify, when reaching 20 µm in length or upon phagosome closure. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for its turnover by PIKfyve. Given that PtdIns(3)P dependent signalling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes. Additionally, we examined how lysosomes, a kingpin organelle essential for pathogen killing, and antigen processing and presentation, adapt in response to phagocyte activation. During phagocyte activation, lysosomes are remodelled from dozens of globular structures to a tubular network, in a process that requires the PI3K-AKT-mTOR signalling pathway. We showed that lysosome tubulation is coupled with an increase in volume and holding capacity. Lysosome remodelling was dependent on de novo synthesis of lysosomal proteins, but independent of TFEB and TFE3 transcription factors, known to scale-up lysosome biogenesis. We demonstrate a novel mechanism of acute organelle expansion via mTORC1-S6K-4E-BP-dependent increase in lysosomal mRNA translation. This process was necessary for efficient and rapid antigen presentation to T-cells by dendritic cells (DCs). Moreover, lysosome remodelling was conserved in DCs activated with select adjuvants, additives used in vaccines to boost efficacy, providing evidence for its possible clinical applicability. Together, we have identified two novel mechanisms controlling organelle identity and adaptation in immune cells.


2021 ◽  
Vol 22 ◽  
Author(s):  
Armita Mahdavi Gorabi ◽  
Mohsen Ghanbari ◽  
Thozhukat Sathyapalan ◽  
Tannaz Jamialahmadi ◽  
Amirhossein Sahebkar

MicroRNAs (miRNAs) are non-coding RNAs containing around 22 nucleotides, which are expressed in vertebrates and plants. They act as posttranscriptional gene expression regulators, fine-tuning various biological processes in different cell types. There is emerging evidence on their role in different stages of atherosclerosis. In addition to regulating the inflammatory cells involved in atherosclerosis, miRNAs play fundamental roles in the pathophysiology of atherosclerosis such as endothelial cell (EC) dysfunction, the aberrant function of the vascular smooth muscle cell (VSMC) and cholesterol metabolism. Moreover, miRNAs participate in several pathogenic pathways of atherosclerotic plaque development, including their effects on immune cell signaling receptors and lipid uptake. In this study, we review our current knowledge of the regulatory role of miRNAs in various pathogenic pathways underlying atherosclerosis development and also outline potential clinical applications of miRNAs in atherosclerosis.


Author(s):  
Stefano Romeo

Cholesterol is the most abundant steroid in animals. Not only is it a vital constituent of cell membranes, where it establishes proper membrane permeability and fluidity, but it is also the immediate metabolic precursor of all known steroid hormones and bile acids. Synthesized de novo in cells or absorbed from the diet, cholesterol circulates in the body in association with lipoproteins and is ultimately degraded into bile acids by the liver. Every perturbation of the numerous enzymes involved in cholesterol metabolism leads to impairment in the development and function of the gastrointestinal, cardiovascular, skeletal, and nervous systems.


Author(s):  
Yushan Wang ◽  
Xiaona Zhang ◽  
Tao Wang ◽  
Wen Liu ◽  
Lijing Wang ◽  
...  

Abnormality in cholesterol homeostasis in the brain is a feature of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) has been identified as a possible biomarker of AD, but its effects on cholesterol metabolism have not been fully characterized. This study was aimed to investigate the impacts of 27-OHC on cholesterol metabolism in nerve cells. SH-SY5Y cells and C6 cells were co-cultured and treated with 5, 10, and 20 μM 27-OHC for 24 h. Results showed that 27-OHC decreased cholesterol levels and up-regulated the expression of transport-related proteins in C6 cells. In SH-SY5Y cells, 27-OHC increased cholesterol accumulation, especially on plasma membrane (PM), which was consistent with the up-regulation of expressions of cholesterol endocytosis receptors, lipid raft-related proteins, and cholesterol esterase. Simultaneously, accumulation of membrane cholesterol promoted cholesterol conversion to 24S-OHC by CYP46A1(24S-hydroxylase) transfer from the endoplasmic reticulum (ER) to PM. Besides, Aβ levels were elevated in SH-SY5Y cells after 27-OHC treatment. Our results suggest that 27-OHC motivates the transfer of astrocyte-derived cholesterol to neurons. Although there exists a feedback mechanism that excessive cholesterol promotes its conversion to 24S-OHC, the increased cholesterol induced by 27-OHC could not be wholly offset in neurons.


2008 ◽  
Vol 295 (4) ◽  
pp. E820-E831 ◽  
Author(s):  
Céline Fernandez ◽  
Marie Lindholm ◽  
Morten Krogh ◽  
Stéphanie Lucas ◽  
Sara Larsson ◽  
...  

Transcriptomics analysis revealed that genes involved in hepatic de novo cholesterol synthesis were downregulated in fed HSL-null mice that had been on a high-fat diet (HFD) for 6 mo. This finding prompted a further analysis of cholesterol metabolism in HSL-null mice, which was performed in fed and 16-h-fasted mice on a normal chow diet (ND) or HFD regimen. Plasma cholesterol was elevated in HSL-null mice, in all tested conditions, as a result of cholesterol enrichment of HDL and VLDL. Hepatic esterified cholesterol content and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein levels were increased in HSL-null mice regardless of the dietary regimen. Unsaturated fatty acid composition of hepatic triglycerides was modified in fasted HSL-null mice on ND and HFD. The increased ABCA1 expression had no major effect on cholesterol efflux from HSL-null mouse hepatocytes. Taken together, the results of this study suggest that HSL plays a critical role in the hydrolysis of cytosolic cholesteryl esters and that increased levels of hepatic cholesteryl esters, due to lack of action of HSL in the liver, are the main mechanism underlying the imbalance in cholesterol metabolism in HSL-null mice.


Sign in / Sign up

Export Citation Format

Share Document