scholarly journals Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes

Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 176
Author(s):  
Mariana Grancieri ◽  
Hércia Stampini Duarte Martino ◽  
Elvira Gonzalez de Mejia

The objective was to evaluate the mechanisms of digested total proteins (DTP), albumin, glutelin, and pure peptides from chia seed (Salvia hispanica L.) to prevent adipogenesis and its associated inflammation in 3T3-L1 adipocytes. Preadipocytes (3T3-L1) were treated during differentiation with either DTP or digested albumin or glutelin (1 mg/mL) or pure peptides NSPGPHDVALDQ and RMVLPEYELLYE (100 µM). Differentiated adipocytes also received DTP, digested albumin or glutelin (1 mg/mL), before (prevention) or after (inhibition) induced inflammation by addition of conditioned medium (CM) from inflamed macrophages. All treatments prevented adipogenesis, reducing more than 50% the expression of PPARγ and to a lesser extent lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP1), lipase activity and triglycerides. Inflammation induced by CM was reduced mainly during prevention, while DTP decreased expression of NF-κB (−48.4%), inducible nitric oxide synthase (iNOS) (−46.2%) and COX-2 (−64.5%), p < 0.05. Secretions of nitric oxide, PGE2 and TNFα were reduced by all treatments, p < 0.05. DTP reduced expressions of iNOS (−52.1%) and COX-2 (−66.4%). Furthermore, digested samples and pure peptides prevented adipogenesis by modulating PPARγ and additionally, preventing and even inhibiting inflammation in adipocytes by inhibition of PPARγ and NF-κB expression. These results highlight the effectiveness of digested total proteins and peptides from chia seed against adipogenesis complications in vitro.

1999 ◽  
Vol 344 (3) ◽  
pp. 873-880 ◽  
Author(s):  
Marthe MOLDES ◽  
Muriel BOIZARD ◽  
Xavier LE LIEPVRE ◽  
Bruno FÈVE ◽  
Isabelle DUGAIL ◽  
...  

We show that Id (inhibitor of DNA binding) 2 and Id3, dominant negative members of the helix-loop-helix (HLH) family, interact with the adipocyte determination and differentiation factor 1 (ADD1)/sterol regulatory element-binding protein (SREBP) 1c, a transcription factor of the basic HLH-leucine zipper family that controls the expression of several key genes of adipose metabolism. Gel mobility-shift assays performed with in vitro-translated ADD1, Id2 or Id3 proteins and a fatty acid synthase (FAS) promoter oligonucleotide showed evidence for a marked inhibition of the formation of DNA-ADD1 complexes by Id2 or Id3 proteins. Co-immunoprecipitation studies using in vitro-translated proteins demonstrated further the physical interaction of Id and ADD1/SREBP-1c proteins in the absence of DNA. Using the FAS gene as a model of an ADD1-regulated promoter in transiently transfected isolated rat adipocytes or mature 3T3-L1 adipocytes, a potent inhibition of the activity of the FAS-chloramphenicol acetyltransferase reporter gene was observed by overexpression of Id2 or Id3. Reciprocally, co-transfection of Id3 antisense and ADD1 expression vectors in preadipocytes potentiated the ADD1/SREBP-1c effect on the FAS promoter activity. Finally, in the non adipogenic NIH-3T3 cell line, most of the ADD1-mediated trans-activation of the FAS promoter was counteracted by co-transfection of Id2 or Id3 expression vectors. Previous studies have indicated Id gene expression to be down-regulated during adipogenesis [Moldes, Lasnier, Fève, Pairault and Djian (1997) Mol. Cell. Biol. 17, 1796-1804]. We here demonstrated that there was a dramatic rise of Id2 and Id3 mRNA levels when 3T3-L1 adipocytes or isolated rat fat cells were exposed to lipolytic and anti-lipogenic agents, forskolin and isoproterenol. Taken together, our data show that Id products are functionally involved in modulating ADD1/SREBP-1c transcriptional activity, and thus lipogenesis in adipocytes.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 399-399
Author(s):  
Mariana Grancieri ◽  
Hercia Stampini Duarte Martino ◽  
Elvira Gonzalez de Mejia

Abstract Objectives To evaluate the mechanism of action of the effect of digested total proteins (DTP), albumin, and glutelin from chia seed to prevent and inhibit inflammation in 3T3-L1 adipocytes. Methods Preadipocytes (3T3-L1) were differentiated into mature adipocytes and received DTP, digested albumin, or glutelin (1 mg/ml) from chia seed together with conditioned medium (CM) from inflamed macrophages during 48 h (prevention), or the digested samples were added after 48 h of CM-stimulated inflammation (inhibition). ROS and cytokines secretion (IL-10, IL-12, IL-6, MCP-1, PGE2, and TNF-α) were analyzed by ELISA and lipid accumulation by oil red-O staining, triglyceride content, lipase activity and expression of proteins (PPAR-γ, SREBP1, FAS, LPL, COX-2, iNOS, and NF-κB) by western-blot. The interactions of peptides with FAS, MAGL, and PPAR-γ were evaluated in silico. Data analyses were performed in triplicate from two independent experiments by ANOVA and post-hoc of Tukey (P &lt; 0.05). Results DTP and digested albumin and glutelin in both, prevention and inhibition of induced inflammation, decreased the expression of PPAR-γ more than 50% (P &lt; 0.05). Digested samples reduced TNF-α secretion, ROS production, lipid accumulation, iNOS and COX-2 expression, especially glutelin (−71, −53, −15, −75, and -85%, respectively) on prevention of inflammation. Albumin digest inhibited NO and PGE2 (−42 and 64%, respectively). DTP reduced the lipase activity (−13%), triglyceride content (−27%), and NF-κB expression (−48%) (P &lt; 0.05). On inhibition of inflammation, only SREBP-1 expression was reduced more than 33% (P &lt; 0.05) by every digested protein. DTP was effective to reduce LPL (-32%), FAS (−29%), iNOS (−52%), and COX-2 (−66%) expression, as well as NO secretion (−15%), and triglyceride content (−18%) (P &lt; 0.05). Peptides TGPSPTAGPPAPGGGTH and YLGAHPGTAN, from digested albumin, showed the highest interaction with PPAR-γ (−9.1 kcal/mol) and MAGL (−7.8 kcal/mol), respectively. Peptide APSPPVLGPP from DTP, showed the highest interaction with FAS (−9.8 kcal/mol). Conclusions Digested samples from chia seed were effective in preventing and even inhibiting inflammation in adipocytes by inhibition of PPAR-γ and NF-κB pathways which highlight the effectiveness these digested proteins against obesity complications. Funding Sources CNPq and CAPES (Brazil), and NIFA HATCH (USA).


2003 ◽  
Vol 282 (2) ◽  
pp. 132-137 ◽  
Author(s):  
Y.u-A.n Yang ◽  
Patrice J. Morin ◽  
Wan Fang Han ◽  
Tinghua Chen ◽  
Daniel M. Bornman ◽  
...  

2020 ◽  
Author(s):  
Laren Narapareddy ◽  
Eric A. Rhon-Calderon ◽  
Lisa A. Vrooman ◽  
Josue Baeza ◽  
Duy K. Nguyen ◽  
...  

AbstractAlthough in vitro fertilization (IVF) is associated with adverse perinatal outcomes, an increasing concern is the long-term health implications. We augmented our IVF mouse model to longitudinally investigate cardiometabolic outcomes in offspring from optimal neonatal litter sizes. We found that IVF-conceived females had higher body weight and cholesterol levels compared to naturally-conceived females, whereas IVF-conceived males had higher levels of triglycerides and insulin, and increased body fat composition. Through transcriptomics and proteomics of adult liver, we identified sexually-dimorphic dysregulation of the sterol regulatory element binding protein (SREBP) pathways that are associated with the sex-specfic phenotypes. We also found that global loss of DNA methylation in placenta was linked to higher cholesterol levels in IVF-conceived females. Our findings indicate that IVF procedures have long-lasting sex-specific effects on metabolic health of offspring and lay the foundation to utilize the placenta as a predictor of long-term outcomes.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Xiaobing Cui ◽  
Junna Luan ◽  
Shiyou Chen

Hepatic steatosis is associated with obesity due to the increased lipogenesis. Previously, we have found that RGC-32 (response gene to complement 32) deficiency prevents the mice from high-fat diet (HFD)-induced obesity and insulin resistance. The present study was conducted to determine the role of RGC-32 in the control of hepatic steatosis. We observed that hepatic RGC-32 expression was dramatically induced by HFD challenge. RGC-32 knockout (RGC32-/-) mice were resistant to HFD-induced hepatic steatosis. More importantly, hepatic triglyceride contents of RGC32-/- mice were significantly decreased compared with wild-type (WT) controls on both normal chow and HFD. Mechanistically, RGC-32 deficiency decreased expression of lipogenesis-related genes, sterol regulatory element (SRE) binding protein (SREBP)-1c, fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD1). Our in vitro study showed that RGC-32 knockdown decreased while RGC-32 overexpression increased SCD1 expression in hepatocytes. Deletion or mutation of SRE in the SCD1 promoter abolished the function of RGC-32. These data demonstrate that RGC-32 contributes to HFD-induced hepatic steatosis by facilitating de novo lipogenesis in a SREBP-1c dependent manner. Therefore, RGC-32 may be a novel drug target in the treatment of hepatic steatosis and its related diseases.


2009 ◽  
Vol 30 (5) ◽  
pp. 1182-1198 ◽  
Author(s):  
Virginie Lecomte ◽  
Emmanuelle Meugnier ◽  
Vanessa Euthine ◽  
Christine Durand ◽  
Damien Freyssenet ◽  
...  

ABSTRACT The role of the transcription factors sterol regulatory element binding protein 1a (SREBP-1a) and SREBP-1c in the regulation of cholesterol and fatty acid metabolism has been well studied; however, little is known about their specific function in muscle. In the present study, analysis of recent microarray data from muscle cells overexpressing SREBP1 suggested that they may play a role in the regulation of myogenesis. We then demonstrated that SREBP-1a and -1c inhibit myoblast-to-myotube differentiation and also induce in vivo and in vitro muscle atrophy. Furthermore, we have identified the transcriptional repressors BHLHB2 and BHLHB3 as mediators of these effects of SREBP-1a and -1c in muscle. Both repressors are SREBP-1 target genes, and they affect the expression of numerous genes involved in the myogenic program. Our findings identify a new role for SREBP-1 transcription factors in muscle, thus linking the control of muscle mass to metabolic pathways.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Ji Young Cha ◽  
Ji Yun Jung ◽  
Jae Yup Jung ◽  
Jong Rok Lee ◽  
Il Je Cho ◽  
...  

Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α)) and nuclear factor-kappa B (NF-κB) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF-κB, and MAPKs as well as production of prostaglandin E2(PGE2), nitric oxide (NO), IL-6, and TNF-αinduced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF-α. Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWSin vitroandin vivo.


Sign in / Sign up

Export Citation Format

Share Document