scholarly journals Protein Digests and Pure Peptides from Chia Seed (Salvia hispanica L) Prevented Adipogenesis and Its Associated Inflammation by Inhibition of PPAR-γ and NF-κB Pathways

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 399-399
Author(s):  
Mariana Grancieri ◽  
Hercia Stampini Duarte Martino ◽  
Elvira Gonzalez de Mejia

Abstract Objectives To evaluate the mechanism of action of the effect of digested total proteins (DTP), albumin, and glutelin from chia seed to prevent and inhibit inflammation in 3T3-L1 adipocytes. Methods Preadipocytes (3T3-L1) were differentiated into mature adipocytes and received DTP, digested albumin, or glutelin (1 mg/ml) from chia seed together with conditioned medium (CM) from inflamed macrophages during 48 h (prevention), or the digested samples were added after 48 h of CM-stimulated inflammation (inhibition). ROS and cytokines secretion (IL-10, IL-12, IL-6, MCP-1, PGE2, and TNF-α) were analyzed by ELISA and lipid accumulation by oil red-O staining, triglyceride content, lipase activity and expression of proteins (PPAR-γ, SREBP1, FAS, LPL, COX-2, iNOS, and NF-κB) by western-blot. The interactions of peptides with FAS, MAGL, and PPAR-γ were evaluated in silico. Data analyses were performed in triplicate from two independent experiments by ANOVA and post-hoc of Tukey (P < 0.05). Results DTP and digested albumin and glutelin in both, prevention and inhibition of induced inflammation, decreased the expression of PPAR-γ more than 50% (P < 0.05). Digested samples reduced TNF-α secretion, ROS production, lipid accumulation, iNOS and COX-2 expression, especially glutelin (−71, −53, −15, −75, and -85%, respectively) on prevention of inflammation. Albumin digest inhibited NO and PGE2 (−42 and 64%, respectively). DTP reduced the lipase activity (−13%), triglyceride content (−27%), and NF-κB expression (−48%) (P < 0.05). On inhibition of inflammation, only SREBP-1 expression was reduced more than 33% (P < 0.05) by every digested protein. DTP was effective to reduce LPL (-32%), FAS (−29%), iNOS (−52%), and COX-2 (−66%) expression, as well as NO secretion (−15%), and triglyceride content (−18%) (P < 0.05). Peptides TGPSPTAGPPAPGGGTH and YLGAHPGTAN, from digested albumin, showed the highest interaction with PPAR-γ (−9.1 kcal/mol) and MAGL (−7.8 kcal/mol), respectively. Peptide APSPPVLGPP from DTP, showed the highest interaction with FAS (−9.8 kcal/mol). Conclusions Digested samples from chia seed were effective in preventing and even inhibiting inflammation in adipocytes by inhibition of PPAR-γ and NF-κB pathways which highlight the effectiveness these digested proteins against obesity complications. Funding Sources CNPq and CAPES (Brazil), and NIFA HATCH (USA).

Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 176
Author(s):  
Mariana Grancieri ◽  
Hércia Stampini Duarte Martino ◽  
Elvira Gonzalez de Mejia

The objective was to evaluate the mechanisms of digested total proteins (DTP), albumin, glutelin, and pure peptides from chia seed (Salvia hispanica L.) to prevent adipogenesis and its associated inflammation in 3T3-L1 adipocytes. Preadipocytes (3T3-L1) were treated during differentiation with either DTP or digested albumin or glutelin (1 mg/mL) or pure peptides NSPGPHDVALDQ and RMVLPEYELLYE (100 µM). Differentiated adipocytes also received DTP, digested albumin or glutelin (1 mg/mL), before (prevention) or after (inhibition) induced inflammation by addition of conditioned medium (CM) from inflamed macrophages. All treatments prevented adipogenesis, reducing more than 50% the expression of PPARγ and to a lesser extent lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP1), lipase activity and triglycerides. Inflammation induced by CM was reduced mainly during prevention, while DTP decreased expression of NF-κB (−48.4%), inducible nitric oxide synthase (iNOS) (−46.2%) and COX-2 (−64.5%), p < 0.05. Secretions of nitric oxide, PGE2 and TNFα were reduced by all treatments, p < 0.05. DTP reduced expressions of iNOS (−52.1%) and COX-2 (−66.4%). Furthermore, digested samples and pure peptides prevented adipogenesis by modulating PPARγ and additionally, preventing and even inhibiting inflammation in adipocytes by inhibition of PPARγ and NF-κB expression. These results highlight the effectiveness of digested total proteins and peptides from chia seed against adipogenesis complications in vitro.


2002 ◽  
Vol 282 (1) ◽  
pp. C125-C133 ◽  
Author(s):  
Marie-Agnès Simonin ◽  
Karim Bordji ◽  
Sandrine Boyault ◽  
Arnaud Bianchi ◽  
Elvire Gouze ◽  
...  

This work demonstrated the constitutive expression of peroxisome proliferator-activated receptor (PPAR)-γ and PPAR-α in rat synovial fibroblasts at both mRNA and protein levels. A decrease in PPAR-γ expression induced by 10 μg/ml lipopolysaccharide (LPS) was observed, whereas PPAR-α mRNA expression was not modified. 15-Deoxy-Δ12,14-prostaglandin J2(15d-PGJ2) dose-dependently decreased LPS-induced cyclooxygenase (COX)-2 (−80%) and inducible nitric oxide synthase (iNOS) mRNA expression (−80%), whereas troglitazone (10 μM) only inhibited iNOS mRNA expression (−50%). 15d-PGJ2 decreased LPS-induced interleukin (IL)-1β (−25%) and tumor necrosis factor (TNF)-α (−40%) expression. Interestingly, troglitazone strongly decreased TNF-α expression (−50%) but had no significant effect on IL-1β expression. 15d-PGJ2 was able to inhibit DNA-binding activity of both nuclear factor (NF)-κB and AP-1. Troglitazone had no effect on NF-κB activation and was shown to increase LPS-induced AP-1 activation. 15d-PGJ2 and troglitazone modulated the expression of LPS-induced iNOS, COX-2, and proinflammatory cytokines differently. Indeed, troglitazone seems to specifically target TNF-α and iNOS pathways. These results offer new insights in regard to the anti-inflammatory potential of the PPAR-γ ligands and underline different mechanisms of action of 15d-PGJ2 and troglitazone in synovial fibroblasts.


Life Sciences ◽  
2003 ◽  
Vol 72 (14) ◽  
pp. 1655-1663 ◽  
Author(s):  
Kaoru Kawaguchi ◽  
Takashi Sugiyama ◽  
Hiroshige Hibasami ◽  
Nagayasu Toyoda

2021 ◽  
Vol 22 (2) ◽  
pp. 505
Author(s):  
Hyo-Shin Kwon ◽  
Gil-Saeng Jeong ◽  
Byeong-Churl Jang

Cudratricusxanthone A (CTXA) is a natural bioactive compound extracted from the roots of Cudrania tricuspidata Bureau and has been shown to possess anti-inflammatory, anti-proliferative, and hepatoprotective activities. However, at present, anti-adipogenic and anti-inflammatory effects of CTXA on adipocytes remain unclear. In this study, we investigated the effects of CTXA on lipid accumulation and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, two known inflammatory enzymes, in 3T3-L1 preadipocytes. Strikingly, CTXA at 10 µM markedly inhibited lipid accumulation and reduced triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. On mechanistic levels, CTXA at 10 µM suppressed not only expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A, but also phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during 3T3-L1 preadipocyte differentiation. In addition, CTXA at 10 µM up-regulated phosphorylation levels of cAMP-activated protein kinase (AMPK) while down-regulating expression and phosphorylation levels of acetyl-CoA carboxylase (ACC) during 3T3-L1 preadipocyte differentiation. Moreover, CTXA at 10 µM greatly attenuated tumor necrosis factor (TNF)-α-induced expression of iNOS, but not COX-2, in 3T3-L1 preadipocytes. These results collectively demonstrate that CTXA has strong anti-adipogenic and anti-inflammatory effects on 3T3-L1 cells through control of the expression and phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3/5, AMPK, and iNOS.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6301
Author(s):  
Jhao-Ru Lai ◽  
Ya-Wen Hsu ◽  
Tzu-Ming Pan ◽  
Chun-Lin Lee

Alcohol metabolism causes an excessive accumulation of liver lipids and inflammation, resulting in liver damage. The yellow pigments monascin (MS) and ankaflavin (AK) of Monascus purpureus-fermented rice were proven to regulate ethanol-induced damage in HepG2 cells, but the complete anti-inflammatory and anti-fatty liver mechanisms in the animal model are still unclear. This study explored the roles of MS and AK in improving alcoholic liver injury. MS and AK were simultaneously fed to evaluate their effects and mechanisms in C57BL/6J mice fed the Lieber–DeCarli liquid alcohol diet for 6 weeks. The results indicated that MS and AK significantly reduced the serum aspartate aminotransferase and alanine aminotransferase activity, as well as the total liver cholesterol and triglyceride levels. The histopathological results indicated that MS and AK prevented lipid accumulation in the liver. MS and AK effectively enhanced the activity of antioxidant enzymes and reduced the degree of lipid peroxidation; AK was particularly effective and exhibited a superior preventive effect against alcoholic liver injury and fatty liver. In addition to inhibiting the phosphorylation of the MAPK family, MS and AK directly reduced TNF-α, IL-6, and IL-1β levels, thereby reducing NF-κB and its downstream iNOS and COX-2 expressions, as well as increasing PPAR-γ, Nrf-2, and HO-1 expressions to prevent liver damage. MS and AK also directly reduced TNF-α, IL-6, and IL-1β expression, thereby reducing the production of NF-κB and its downstream iNOS and COX-2, and increasing PPAR-γ, Nrf-2, and HO-1 expressions, preventing alcohol damage to the liver.


2018 ◽  
Vol 88 (5-6) ◽  
pp. 309-318
Author(s):  
Hae Seong Song ◽  
Jung-Eun Kwon ◽  
Hyun Jin Baek ◽  
Chang Won Kim ◽  
Hyelin Jeon ◽  
...  

Abstract. Sorghum bicolor L. Moench is widely grown all over the world for food and feed. The effects of sorghum extracts on general inflammation have been previously studied, but its anti-vascular inflammatory effects are unknown. Therefore, this study investigated the anti-vascular inflammation effects of sorghum extract (SBE) and fermented extract of sorghum (fSBE) on human aortic smooth muscle cells (HASMCs). After the cytotoxicity test of the sorghum extract, a series of experiments were conducted. The inhibition effects of SBE and fSBE on the inflammatory response and adhesion molecule expression were measured using treatment with tumor necrosis factor-α (TNF-α), a crucial promoter for the development of atherosclerotic lesions, on HASMCs. After TNF-α (10 ng/mL) treatment for 2 h, then SBE and fSBE (100 and 200 μg/mL) were applied for 12h. Western blotting analysis showed that the expression of vascular cell adhesion molecule-1 (VCAM-1) (2.4-fold) and cyclooxygenase-2 (COX-2) (6.7-fold) decreased, and heme oxygenase-1 (HO-1) (3.5-fold) increased compared to the TNF-α control when treated with 200 μg/mL fSBE (P<0.05). In addition, the fSBE significantly increased the expression of HO-1 and significantly decreased the expression of VCAM-1 and COX-2 compared to the TNF-α control in mRNA level (P<0.05). These reasons of results might be due to the increased concentrations of procyanidin B1 (about 6-fold) and C1 (about 30-fold) produced through fermentation with Aspergillus oryzae NK for 48 h, at 37 °C. Overall, the results demonstrated that fSBE enhanced the inhibition of the inflammatory response and adherent molecule expression in HASMCs.


2018 ◽  
Vol 9 (03) ◽  
pp. 20192-20203
Author(s):  
Dr Maghsoudi, Hossein ◽  
Samaneh Haj-allahyari

Osteoarthritis (arthritis) is biomechanical, biochemical and cellular phenomenon, and is not known as a degenerative disease. Arthritis is one of the common chronic diseases and the most important reason of physical disability in the world. According to its side effect such as peptic ulcers, gastrointestinal bleeding, liver toxicity and renal complications dueofprescribing current treatment contain corticosteroid and non-steroidal, we decided to evaluate possible effect of anti-inflammatory Esential oil of Fraxinus excelsior (EOFE) on biomarkers involved in disease. EOFE were prepared of genetic resources center. Bovine  articular cartilage derived from the metacarpophalangeal joints of 14–18-month-old animals (without any sign of inflammation and bleeding) sent to laboratory in sterile bags at 4ºC. Cells were cultured in appropriate condition and counted by hemocytometer, viability assessed by trypan blue. After LPS treatment, cytokine levels were assayed. Cells cultures again and were kept in 37C, 90% humidity in CO2 incubator and after RNA extraction, RT-PCR and PCR done. Also by Real-time PCR, gene expression was evaluated. E.E.F.E level cause down regulation of COX-2, IL-1β, TNF-α in LPS-stimulated cells.


2020 ◽  
Vol 16 (2) ◽  
pp. 196-203 ◽  
Author(s):  
Myoung Hi Yi ◽  
Shakina Yesmin Simu ◽  
Sungeun Ahn ◽  
Verónica Castro Aceituno ◽  
Chao Wang ◽  
...  

Background: Biosynthesis of gold nanoparticles from medicinal plants has become an interesting strategy in biomedical research due to its exclusive properties including less toxic cellular level through its ecofriendly biological function. Objective: To examine the anti-lipid accumulation effect of spherical gold nanoparticles (size 10-20 nm) synthesized from Dendropanax morbifera Léveille (D-AuNPs) in both 3T3-L1 and HepG2 cells. Method: 3T3-L1 preadipocytes and HepG2 hepatocytes were stimulated with cocktail media to generate obese and fatty liver disease models. Cell cytotoxicity and cell proliferation assays were performed in adipocytes at different stages of growth. An anti-lipid accumulation assay was performed in 3T3-L1 obese and HepG2 fatty liver models using different doses of D-AuNPs. Expression of adipogenic genes of PPARγ, CEBPα, Jak2, STAT3, and ap2 and hepatogenic genes PPARα, FAS, and ACC was measured by real-time PCR. In addition, protein expression of PPARγ and CEBPα was evaluated by immunoblotting assay. Result: We found that D-AuNPs (size 10–20 nm) at concentrations up to 100 µg/ml were nontoxic to 3T3-L1 and HepG2 at post-confluent and mature stages. In addition, pretreatment of D-AuNPs at post-confluent stage reduced triglyceride content. In addition, the adipogenesis process was negatively controlled by D-AuNPs, with downregulated PPARγ, CEBPα, Jak2, STAT3, and ap2 expression in 3T3-L1 cells and FAS and ACC levels in HepG2 cells. Conclusion: These data indicated that D-AuNPs exert antiadipogenic properties. We hypothesize that Dendropanax contains a large amount of phenolic compound that coats the surface of gold nanoparticles and has the ability to reduce the excess amount of lipid in both cell lines.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Peeraporn Varinthra ◽  
Shun-Ping Huang ◽  
Supin Chompoopong ◽  
Zhi-Hong Wen ◽  
Ingrid Y. Liu

Age-related macular degeneration (AMD) is a progressive eye disease that causes irreversible impairment of central vision, and effective treatment is not yet available. Extracellular accumulation of amyloid-beta (Aβ) in drusen that lie under the retinal pigment epithelium (RPE) has been reported as one of the early signs of AMD and was found in more than 60% of Alzheimer’s disease (AD) patients. Extracellular deposition of Aβ can induce the expression of inflammatory cytokines such as IL-1β, TNF-α, COX-2, and iNOS in RPE cells. Thus, finding a compound that can effectively reduce the inflammatory response may help the treatment of AMD. In this research, we investigated the anti-inflammatory effect of the coral-derived compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) on Aβ1-42 oligomer (oAβ1-42) added to the human adult retinal pigment epithelial cell line (ARPE-19). Our results demonstrated that 4-PSB-2 can decrease the elevated expressions of TNF-α, COX-2, and iNOS via NF-κB signaling in ARPE-19 cells treated with oAβ1-42 without causing any cytotoxicity or notable side effects. This study suggests that 4-PSB-2 is a promising drug candidate for attenuation of AMD.


Sign in / Sign up

Export Citation Format

Share Document