scholarly journals Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 592
Author(s):  
Maaike J. Bruins ◽  
Ulla Létinois

This study applied linear programming using a Dutch “model diet” to simulate the dietary shifts needed in order to optimize the intake of vitamin D and to minimize the carbon footprint, considering the popularity of the diet. Scenarios were modelled without and with additional fortified bread, milk, and oil as options in the diets. The baseline diet provided about one fifth of the adequate intake of vitamin D from natural food sources and voluntary vitamin D-fortified foods. Nevertheless, when optimizing this diet for vitamin D, these food sources together were insufficient to meet the adequate intake required, unless the carbon emission and calorie intake were increased almost 3-fold and 2-fold, respectively. When vitamin D-fortified bread, milk, and oil were added as options to the diet, along with increases in fish consumption, and decreases in sugar, snack, and cake consumption, adequate intakes for vitamin D and other nutrients could be met within the 2000 kcal limits, along with a relatively unchanged carbon footprint. Achieving vitamin D goals while reducing the carbon footprint by 10% was only possible when compromising on the popularity of the diet. Adding vitamin D to foods did not contribute to the total carbon emissions. The modelling study shows that it is impossible to obtain adequate vitamin D through realistic dietary shifts alone, unless more vitamin D-fortified foods are a necessary part of the diet.

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1787 ◽  
Author(s):  
Esther Cuadrado-Soto ◽  
Ana M. López-Sobaler ◽  
Ana Isabel Jiménez-Ortega ◽  
Aránzazu Aparicio ◽  
Laura M. Bermejo ◽  
...  

Bone problems in the population begin to be establish in childhood. The present study aims to assess the usual calcium, phosphorus, magnesium, and vitamin D intakes, along with the food sources of these nutrients, in Spanish children participating in the EsNuPI (Estudio Nutricional en Población Infantil Española) study. Two 24 h dietary recalls were applied to 1448 children (1 to <10 years) divided into two sub-samples: one reference sample (RS) of the general population [n = 707] and another sample which exclusively included children consuming enriched or fortified milks, here called “adapted milks” (AMS) [n = 741]. Estimation of the usual intake shows that nutrient intake increased with age for all nutrients except vitamin D. Using as reference the Dietary Reference Values from the European Food Safety Authority (EFSA), calcium and magnesium intakes were found to be below the average requirement (AR) and adequate intake (AI), respectively, in a considerable percentage of children. Furthermore, phosphorus exceeded the AI in 100% of individuals and vitamin D was lower than the AI in almost all children studied. The results were very similar when considering only plausible reporters. When analyzing the food sources of the nutrients studied, milk and dairy products contributed the most to calcium, phosphorus, magnesium, and vitamin D. Other sources of calcium were cereals and vegetables; for phosphorus: meat, meat products, and cereals; for magnesium: cereals and fruits; and, for vitamin D: fish and eggs. These results highlight the desirability of improving the intake concerning these nutrients, which are involved in bone and metabolic health in children. The AMS group appeared to contribute better to the adequacy of those nutrients than the RS group, but both still need further improvement. Of special interest are the results of vitamin D intakes, which were significantly higher in the AMS group (although still below the AI), independent of age.


Author(s):  
Jorge Marques Pinto ◽  
Viviane Merzbach ◽  
Ashley G. B. Willmott ◽  
Jose Antonio ◽  
Justin Roberts

Abstract Background Prevalence of vitamin D insufficiency/deficiency has been noted in athletic populations, although less is known about recreationally active individuals. Biofortification of natural food sources (e.g. UV radiated mushrooms) may support vitamin D status and is therefore of current scientific and commercial interest. The aim of this study was to assess the impact of a mushroom-derived food ingredient on vitamin D status in recreationally active, healthy volunteers. Methods Twenty-eight participants were randomly assigned to either: 25 μg (1000 IU) encapsulated natural mushroom-derived vitamin D2; matched-dose encapsulated vitamin D3 or placebo (PL) for 12 weeks. Venous blood samples were collected at baseline, week 6 and 12 for analysis of serum 25(OH)D2 and 25(OH)D3 using liquid chromatography mass spectrometry. Habitual dietary intake and activity were monitored across the intervention. Results Vitamin D status (25(OH)DTOTAL) was significantly increased with vitamin D3 supplementation from 46.1 ± 5.3 nmol·L− 1 to 88.0 ± 8.6 nmol·L− 1 (p < 0.0001) across the intervention, coupled with an expected rise in 25(OH)D3 concentrations from 38.8 ± 5.2 nmol·L− 1 to 82.0 ± 7.9 nmol·L− 1 (p < 0.0001). In contrast, D2 supplementation increased 25(OH)D2 by + 347% (7.0 ± 1.1 nmol·L− 1 to 31.4 ± 2.1 nmol·L− 1, p < 0.0001), but resulted in a − 42% reduction in 25(OH)D3 by week 6 (p = 0.001). A net + 14% increase in 25(OH)DTOTAL was established with D2 supplementation by week 12 (p > 0.05), which was not statistically different to D3. Vitamin D status was maintained with PL, following an initial − 15% reduction by week 6 (p ≤ 0.046 compared to both supplement groups). Conclusions The use of a UV radiated mushroom food ingredient was effective in maintaining 25(OH)DTOTAL in healthy, recreationally active volunteers. This may offer an adjunct strategy in supporting vitamin D intake. However, consistent with the literature, the use of vitamin D3 supplementation likely offers benefits when acute elevation in vitamin D status is warranted.


2003 ◽  
Vol 62 (4) ◽  
pp. 813-821 ◽  
Author(s):  
Lars Ovesen ◽  
Rikke Andersen ◽  
Jette Jakobsen

Vitamin D is produced endogenously when the skin is exposed to sunlight and can be obtained exogenously from a few natural food sources, from food fortification and from supplements. Generally, vitamin D intake is low ≤2–3 μg/d in Europe. Casual exposure to sunlight is thought to provide most of the vitamin D requirement of the human population. However, skin synthesis of vitamin D may not compensate for the low nutritional intake in Europe, even in countries with high supplies from food fortification and supplements. For assessment of vitamin D nutritional status the concentration of 25-hydroxyvitamin D (25(OH)D) in serum is considered to be an accurate integrative measure reflecting an individual's dietary intake and cutaneous production. A substantial percentage of the elderly and adolescents in Europe have a low concentration of 25(OH)D; in the elderly this percentage ranges from approximately 10 in the Nordic countries to approximately 40 in France. Low vitamin D status seems to be aggravated by disease and immobility, and by a low frequency of supplement use.


2021 ◽  
Vol 4 (1) ◽  
pp. 42-49
Author(s):  
Anukram Sharma ◽  
Khem N Poudyal ◽  
Nawraj Bhattarai

Study of carbon footprint is an emerging field which provides statistical analysis about the contribution of an activity on global climate change. Every human activity in daily life is achieved at the expense of those substances which directly or indirectly contribute to global warming. In this era of global communication, humans are habitual to know about the ongoing changes in the world. Newspapers are one of the reliable sources for getting updated about the global information. Paper-based newspapers come at the cost of greenhouse gas emissions. So, this article based upon an analysis of carbon footprint of Nepal’s national daily newspaper provides evaluation of each of the following: carbon emission during the manufacturing of raw materials, carbon emission from fuel consumption during transportation of raw materials, carbon emissions during the printing of newspaper and carbon emission from the fuel consumption during the transportation of printed newspaper. During the study period of 2019 A.D., the result shows that the total carbon emission of Gorkhapatra newspaper was found to be 2308.5 kg CO2e per ton. The upshot of this study provides not only thorough information about carbon emissions but also builds a foundation for calculation of carbon emissions from paper used in various sectors.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Larisse Melo ◽  
Clementine Ng ◽  
Ricky Tsang ◽  
Anubhav Pratap Singh ◽  
David Kitts ◽  
...  

AbstractAdults aged > 50 years, which make up to 40% of the European population, are vulnerable to low vitamin B12 (B12) status due to age-related factors that impair digestion and absorption of protein-bound B12 from natural food sources. Older adults are recommended to meeting their dietary B12 intake through the consumption of B12-fortified foods or supplements because these products contain free B12. B12 seems most bioavailable from milk products compared to other food sources, showcasing dairy as a potential vehicle for B12 food fortification. Yogurt is a versatile, popular dairy product, making it a promising food vehicle for B12 fortification to enhance the availability of B12-fortified foods for population groups at risk of B12 deficiency. With the overall goal to develop a novel, B12-fortified dairy product, the objective of this project was to compare the shelf-life stability of different chemical forms of B12 added to yogurt either in isolated or in encapsulated form. For both fortification strategies, we compared methylcobalamin (MeCB), a naturally-occurring B12 form, and cyanocobalamin (CnCB), the synthetic form of B12. Encapsulated microparticles were created by spray-drying a maize starch-derived polymeric material (EUDRAGUARD Natural®) with 1% (w/V) MeCB or CnCB. The release of B12 from encapsulated microparticles was confirmed by in vitro simulated gastrointestinal digestion; maximum B12 release (103% recovery) was achieved under conditions simulating the small intestine, where B12 is absorbed in the human body. Yogurts were produced by incubating whole milk (3.25% milk fat) with yogurt starter bacteria at 43°C overnight; after fermentation and cooling down, isolated (I-MeCB or I-CnCB) or encapsulated B12 powders (E-MeCB or E-CnCB) in the concentration of 50μg of B12/175 g of yogurt were added, creating stirred yogurt. Yogurts were stored at 4°C for eight weeks, with intermittent sampling for B12 stability testing using RIDASCREEN immunoassay. For CnCB-fortified yogurts, I-CnCB and E-CnCB had similar B12 concentrations at baseline (48.3μg and 48.2μg, respectively) and week 8 (53.9μg and 51.4μg, respectively). Difference in B12 content between I-CnCB and E-CnCB was < 5% for both time-points. For MeCB, similar concentrations were found for I-MeCB (64.1μg) and E-MeCB (65.0μg) at baseline; however, at week 8, E-MeCB remained stable (69.8μg) while a pronounced decrease in B12 was observed with I-MeCB (33.3μg). At week 8, I-MeCB B12 concentrations were 52% lower than E-MeCB. In conclusion, CnCB was shown to be the more stable fortificant throughout shelf-life. Encapsulation techniques are a viable option to increase MeCB stability in fortified yogurts.


2021 ◽  
Author(s):  
S. Gunathilake ◽  
◽  
T. Ramachandra ◽  
U.G.D. Madushika ◽  
◽  
...  

The construction industry is one of the major contributors that emits carbon into the environment. When considering the carbon emission in the local context, even though there are Input-Output Tables (IOTs) that applies to all types of industries in Sri Lanka, there seems to be limited focuses on IOTs specifically relating to the construction activities which is vital for the need due to its outstanding contribution to the carbon footprint of Sri Lanka. Hence, this study aims to calculate the carbon footprint construction activities in Sri Lanka using IOT with a bottom-up approach. The required data were extracted from published documents of Survey of Construction Industry by Census and Statistics, and The Inventory of Carbon and Energy (ICE) database of UK. Carbon footprint of construction activities were calculated using IOT with a bottom-up approach. The analysis revealed that the road and railway sector have the highest contribution of 48% to the monetary value of the construction industry meanwhile it accounts for 44% of the highest carbon emission to the atmosphere in the year 2020. Subsequently, activities related to non-residential residential, and utilities contribute to 20%, 15%, and 12% of total carbon emission respectively. In terms of construction materials, cement-based activities (59%) were the highest contributor while rubble and metal-based (23%), and iron and steel-based activities (17%) were next level contributors to the carbon emission due to construction. The analysis concluded that the as the initiatives, public sector projects including road and railway sector and utilities should integrate more sustainable construction practices as they are responsible for more than 50% of carbon emission.


Author(s):  
Yi Li ◽  
Yi Wang ◽  
Qing He ◽  
Yongliang Yang

Carbon footprint refers to the greenhouse gas emissions of an activity during the whole life cycle or a specific period of time. Mulberry is an important cash crop. Thus, establishing a standardized accounting method for the carbon footprint of mulberry production and analyzing its carbon emission scenarios is important in correctly understanding the impact of mulberry production on the environment. Using the life cycle assessment method and on the basis of the statistical data of mulberry production of urban farmers in Haining City, China, in 2014–2016, this study calculates and evaluates the carbon footprint of mulberry production. Results show the following. (1) Indirect carbon emissions is the main part of total carbon emissions, accounting for 85%–88% of total carbon emission, and industrial inputs (fertilizers and pesticides) are the main cause of carbon emissions. (2) The total carbon emissions per hectare in 2016 (6550.73 kgce/hm2) rose relative to the 2015 data (5617.92 kgce/hm2 at least in 2014) (5729.64 kgce/hm2). The output value of mulberry in spring was greater than that in summer and autumn, and the production efficiency of mulberry carbon in spring was higher than that in summer and autumn. The ecological environment of the mulberry production industry can be improved by increasing the resources of carbon sequestration and reducing the source of production input. (3) In general, the photosynthetic carbon sink of mulberry is greater than the total carbon emission and presents a positive externality to the ecological environment.


2017 ◽  
Vol 2 (1) ◽  
pp. 59
Author(s):  
Nor Izana Mohd Shobri ◽  
Wan Noor Anira Hj Wan Ali ◽  
Norizan Mt Akhir ◽  
Siti Rasidah Md Sakip

The purpose of this study is to assess the carbon footprint emission at UiTM Perak, Seri Iskandar Campus. The assessment focuses on electrical power and transportation usage. Questionnaires were distributed to the staffs and students to survey their transportation usage in the year 2014 while for electrical consumption, the study used total energy consumed in the year 2014. Data was calculating with the formula by Green House Gas Protocol. Total carbon footprint produced by UiTM Perak, Seri Jskandar Campus in the year 2014 is 11842.09 MTC02' The result of the study is hoped to provide strategies for the university to reduce the carbon footprint emission.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


2021 ◽  
pp. 004051752110062
Author(s):  
Weiran Qian ◽  
Xiang Ji ◽  
Pinghua Xu ◽  
Laili Wang

Recycled polyester textile fibers stemming from waste polyester material have been applied in the textile industry in recent years. However, there are few studies focusing on the evaluation and comparison of the environmental impacts caused by the production of virgin polyester textiles and recycled polyester textiles. In this study, the carbon footprint and water footprint of virgin polyester textiles and recycled polyester textiles were calculated and compared. The results showed that the carbon footprint of the virgin polyester textiles production was 119.59 kgCO2/100 kg. Terephthalic acid production process occupied the largest proportion, accounting for 45.83%, followed by polyester fabric production process, ethylene production process, paraxylene production process, ethylene glycol production process and polyester fiber production process. The total carbon footprint of waste polyester recycling was 1154.15 kgCO2/100 kg, approximately ten times that of virgin polyester textiles production. As for the water footprint, it showed that virgin polyester fabric production and recycled polyester fabric production both had great impact on water eutrophication and water scarcity. Chemical oxygen demand caused the largest water eutrophication footprint, followed by ammonia-nitrogen and five-day biochemical oxygen demand. The water scarcity footprint of virgin polyester fabric production and recycled polyester fabric production was 5.98 m3 H2Oeq/100 kg and 1.90 m3 H2Oeq/100 kg, respectively. The comprehensive evaluation of carbon footprint and water footprint with the life cycle assessment polygon method indicated that the polyester fabric production process exhibited greater environmental impacts both for virgin polyester and recycled polyester.


Sign in / Sign up

Export Citation Format

Share Document