scholarly journals Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3672
Author(s):  
Zsolt Gáll ◽  
Orsolya Székely

Purpose of review: increasing evidence suggests that besides the several metabolic, endocrine, and immune functions of 1alpha,25-dihydroxyvitamin D (1,25(OH)2D), the neuronal effects of 1,25(OH)2D should also be considered an essential contributor to the development of cognition in the early years and its maintenance in aging. The developmental disabilities induced by vitamin D deficiency (VDD) include neurological disorders (e.g., attention deficit hyperactivity disorder, autism spectrum disorder, schizophrenia) characterized by cognitive dysfunction. On the other hand, VDD has frequently been associated with dementia of aging and neurodegenerative diseases (e.g., Alzheimer’s, Parkinson’s disease). Recent findings: various cells (i.e., neurons, astrocytes, and microglia) within the central nervous system (CNS) express vitamin D receptors (VDR). Moreover, some of them are capable of synthesizing and catabolizing 1,25(OH)2D via 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1) and 25-hydroxyvitamin D 24-hydroxylase (CYP24A1) enzymes, respectively. Both 1,25(OH)2D and 25-hydroxyvitamin D were determined from different areas of the brain and their uneven distribution suggests that vitamin D signaling might have a paracrine or autocrine nature in the CNS. Although both cholecalciferol and 25-hydroxyvitamin D pass the blood–brain barrier, the influence of supplementation has not yet demonstrated to have a direct impact on neuronal functions. So, this review summarizes the existing evidence for the action of vitamin D on cognitive function in animal models and humans and discusses the possible pitfalls of therapeutic clinical translation.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Annabelle G. Small ◽  
Sarah Harvey ◽  
Jaspreet Kaur ◽  
Trishni Putty ◽  
Alex Quach ◽  
...  

AbstractVitamin D deficiency remains a global concern. This ‘sunshine’ vitamin is converted through a multistep process to active 1,25-dihydroxyvitamin D3 (1,25D), the final step of which can occur in macrophages. Here we demonstrate a role for vitamin D in innate immunity. The expression of the complement receptor immunoglobulin (CRIg), which plays an important role in innate immunity, is upregulated by 1,25D in human macrophages. Monocytes cultured in 1,25D differentiated into macrophages displaying increased CRIg mRNA, protein and cell surface expression but not in classical complement receptors, CR3 and CR4. This was associated with increases in phagocytosis of complement opsonised Staphylococcus aureus and Candida albicans. Treating macrophages with 1,25D for 24 h also increases CRIg expression. While treating macrophages with 25-hydroxyvitamin D3 does not increase CRIg expression, added together with the toll like receptor 2 agonist, triacylated lipopeptide, Pam3CSK4, which promotes the conversion of 25-hydroxyvitamin D3 to 1,25D, leads to an increase in CRIg expression and increases in CYP27B1 mRNA. These findings suggest that macrophages harbour a vitamin D-primed innate defence mechanism, involving CRIg.


2016 ◽  
Vol 37 (5) ◽  
pp. 521-547 ◽  
Author(s):  
Peter J. Tebben ◽  
Ravinder J. Singh ◽  
Rajiv Kumar

AbstractHypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.


1987 ◽  
Vol 65 (8) ◽  
pp. 2111-2112 ◽  
Author(s):  
Ajai K. Srivastav ◽  
L. Rani ◽  
K. Swarup

Intraperitoneal injections of either vitamin D3 (4 IU/100 g body wt.), 25 hydroxyvitamin D3 (100 ng/100 g body wt.), or 1,25 dihydroxyvitamin D3 (100 ng/100 g body wt.) for 15 days induced hypercalcemia, hyperphosphatemia, and depletion of calcium deposits in the paravertebral lime sacs in an anuran, Rana tigrina.


Endocrinology ◽  
2016 ◽  
Vol 157 (4) ◽  
pp. 1341-1347 ◽  
Author(s):  
Jasmaine D. Williams ◽  
Abhishek Aggarwal ◽  
Srilatha Swami ◽  
Aruna V. Krishnan ◽  
Lijuan Ji ◽  
...  

Abstract Patients with breast cancer (BCa) frequently have preexisting vitamin D deficiency (low serum 25-hydroxyvitamin D) when their cancer develops. A number of epidemiological studies show an inverse association between BCa risk and vitamin D status in humans, although some studies have failed to find an association. In addition, several studies have reported that BCa patients with vitamin D deficiency have a more aggressive molecular phenotype and worse prognostic indicators. However, it is unknown whether this association is mechanistically causative and, if so, whether it results from systemic or tumor autonomous effects of vitamin D signaling. We found that ablation of vitamin D receptor expression within BCa cells accelerates primary tumor growth and enables the development of metastases, demonstrating a tumor autonomous effect of vitamin D signaling to suppress BCa metastases. We show that vitamin D signaling inhibits the expression of the tumor progression gene Id1, and this pathway is abrogated in vitamin D deficiency in vivo in 2 murine models of BCa. These findings are relevant to humans, because we discovered that the mechanism of VDR regulation of Inhibitor of differentiation 1 (ID1) is conserved in human BCa cells, and there is a negative correlation between serum 25-hydroxyvitamin D levels and the level of ID1 in primary tumors from patients with BCa.


2000 ◽  
Vol 164 (3) ◽  
pp. 339-348 ◽  
Author(s):  
N Akeno ◽  
A Matsunuma ◽  
T Maeda ◽  
T Kawane ◽  
N Horiuchi

We investigated the effects of dexamethasone on vitamin D-1alpha-hydroxylase and -24-hydroxylase expression and on vitamin D receptor (VDR) content in the kidneys of mice fed either a normal (NCD) diet or a calcium- and vitamin D-deficient (LCD) diet for 2 weeks. For the last 5 days mice received either vehicle or dexamethasone (2 mg/kg per day s.c.). Dexamethasone significantly increased plasma calcium concentrations without changing plasma concentrations of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) in both NCD and LCD groups. Northern blot and enzyme activity analyses in NCD mice revealed that dexamethasone increased renal VDR mRNA expression modestly and greatly increased 24-hydroxylase mRNA abundance and enzyme activity, but did not affect 1alpha-hydroxylase mRNA abundance and enzyme activity. In mice fed an LCD diet, dexamethasone increased renal VDR mRNA expression 1.5-fold, decreased 1alpha-hydroxylase mRNA abundance (52%) and activity (34%), and markedly increased 24-hydroxylase mRNA abundance (16-fold) and enzyme activity (9-fold). Dexamethasone treatment did not alter functional VDR number (B(max) 125-141 fmol/mg protein) or ligand affinity (K(d) 0.13-0.10 nM) in LCD mice. Subcutaneous injections of 1,25(OH)(2)D(3) (0.24 nmol/kg per day for 5 days) into NCD mice strongly increased renal 24-hydroxylase mRNA abundance and enzyme activity, while there was no effect of dexamethasone on renal 24-hydroxylase expression in these mice. This may be due to overwhelming induction of 24-hydroxylase by 1,25(OH)(2)D(3). These findings suggest that glucocorticoid-induced osteoporosis is caused by direct action of the steroids on bone, and the regulatory effect of glucocorticoids on renal 25-hydroxyvitamin D(3) metabolism may be less implicated in the initiation and progression of the disease.


1994 ◽  
Vol 86 (5) ◽  
pp. 627-632 ◽  
Author(s):  
A. J. Shaw ◽  
M. E. Hayes ◽  
M. Davies ◽  
B. D. Edwards ◽  
F. W. Ballardie ◽  
...  

1. Cyclosporin A, an immunosuppressive drug used to treat psoriasis, stimulates renal synthesis of 1,25-dihydroxyvitamin D in rats. 1,25-Dihydroxy vitamin D can also reduce the activity of psoriasis, and in the present study we have examined the possibility that cyclosporin A mediates some of its actions in psoriasis by renal or extra-renal production of 1,25-dihydroxyvitamin D. 2. Treatment of 12 psoriatic patients with cyclosporin A (5 mg day−1 kg−1) for 3 months significantly improved the psoriasis activity and severity index and reduced glomerular filtration rate, but serum 1,25-dihydroxyvitamin D levels were not changed. However, 1–3 months after stopping cyclosporin A treatment, an increase in the psoriasis activity and severity index score was accompanied by a small, but significant, increase in serum 1,25-dihydroxyvitamin D concentration. Plasma 1,25-dihydroxyvitamin D levels in rats gavaged with cyclosporin A (15 mg day−1 kg−1 for 2 weeks) were significantly increased compared with controls, but a lower dose of cyclosporin A (2.4 mg day−1 kg−1) had no effect. Renal 25-hydroxyvitamin D-24-hydroxylase activity in rat kidney homogenates was not different between control and cyclosporin A-treated rats. Renal 25-hydroxyvitamin D-1α-hydroxylase activity was not detectable in these homogenates. Extra-renal production of 1,25-dihydroxyvitamin D by activated macrophages isolated from the synovial fluid of patients with inflammatory arthritis was reduced after incubation with cyclosporin A (0.1–10 μmol/l) for 30 h or 5 days. 3. It is unlikely that alteration of circulating 1,25-dihydroxyvitamin D concentration is one of the modes of action of cyclosporin A in psoriasis. Since cyclosporin A inhibits 1,25-dihydroxyvitamin D production by activated synovial fluid macrophages, it is unlikely that cyclosporin A mediates some of its therapeutic actions by local synthesis of 1,25-dihydroxyvitamin D within the psoriatic lesion.


1989 ◽  
Vol 17 (3) ◽  
pp. 226-242 ◽  
Author(s):  
E. Harju ◽  
R. Punnonen ◽  
R. Tuimala ◽  
J. Salmi ◽  
I. Paronen

The effects on general and bone metabolism of femoral neck fracture patients of 0.25 μg α-calcoid given orally twice daily ( n=9) and 25 μg calcitonin given subcutaneously 30 times ( n=10) in 10 weeks were studied against a control ( n=ll). Bone histology and histomorphometry showed non-age related osteoporosis in 30% and osteomalacia in 22% of the patients studied. Impaired serum vitamin D status was found in 47 – 88% of patients, secondary hyperparathyroidism and increased serum parathyroid hormone in 59% and decreased serum calcitonin levels in 69%. On histology, normal findings and non-age related osteoporosis on histology were associated with low serum levels of 25-hydroxyvitamin D3,1,25- and 24,25-dihydroxy vitamin D3. Very high serum levels of 1,25-dihydroxyvitamin D3 and low levels of 25-hydroxyvitamin D3 occurred in fracture patients with osteomalacia. Calcitonin improved calcium balance, reduced osteoporosis and increased the serum 1,25- and 24,25-dihydroxyvitamin D3 levels but had no effect on osteomalacia. Vitamin D reduced osteomalacia, slightly increased the serum 1,25-dihydroxyvitamin D3 concentration and decreased serum levels of parathyroid hormone. Both treatments gave a similar slight decrease in serum calcitonin concentrations. A mechanism of action for the treatments is suggested.


Scientifica ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Federico Carbone ◽  
Fabrizio Montecucco

Vitamin D has been shown to play critical activities in several physiological pathways not involving the calcium/phosphorus homeostasis. The ubiquitous distribution of the vitamin D receptor that is expressed in a variety of human and mouse tissues has strongly supported research on these “nonclassical” activities of vitamin D. On the other hand, the recent discovery of the expression also for vitamin D-related enzymes (such as 25-hydroxyvitamin D-1α-hydroxylase and the catabolic enzyme 1,25-dihydroxyvitamin D-24-hydroxylase) in several tissues suggested that the vitamin D system is more complex than previously shown and it may act within tissues through autocrine and paracrine pathways. This updated model of vitamin D axis within peripheral tissues has been particularly investigated in atherosclerotic pathophysiology. This review aims at updating the role of the local vitamin D within atherosclerotic plaques, providing an overview of both intracellular mechanisms and cell-to-cell interactions. In addition, clinical findings about the potential causal relationship between vitamin D deficiency and atherogenesis will be analysed and discussed.


PEDIATRICS ◽  
1987 ◽  
Vol 80 (1) ◽  
pp. 97-101
Author(s):  
E. Takeda ◽  
Y. Kuroda ◽  
T. Saijo ◽  
E. Naito ◽  
H. Kobashi ◽  
...  

Three patients with clinically different severities of vitamin D-dependent rickets, type II, with alopecia, which is 1,25-dihydroxyvitamin D-receptor-defect rickets and is particularly resistant to treatment with calciferol analogues, were treated with large doses of lα-hydroxyvitamin D3 (1α-(OH)D3) and 2 g of calcium lactate. Except for the alopecia, all of the abnormalities of patients 1 and 2 were reversed by treatment with 3 µg/kg/d of 1α-(OH)D3, and those of patient 3, who had the severest manifestations, were reversed by treatment with 6 µg/kg/d. The serum 24,25-dihydroxyvitamin D concentrations of the three patients were low before treatment and those of patients 1 and 2 increased during treatment. These findings suggest that in patients 1 and 2, 25-hydroxyvitamin D-24-hydroxylase was stimulated via a 1,25-dihydroxyvitamin D-receptor-mediated system by treatment with 1α-(OH)D3.


Sign in / Sign up

Export Citation Format

Share Document