scholarly journals Virulence Properties of GI-23 Infectious Bronchitis Virus Isolated in Poland and Efficacy of Different Vaccination strategies

Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 522
Author(s):  
Anna Lisowska ◽  
Anna Pikuła ◽  
Justyna Opolska ◽  
Agnieszka Jasik ◽  
Anna Kycko ◽  
...  

Infectious bronchitis virus (IBV) is one of the most important poultry pathogens, leading significant economic losses worldwide. IBV is characterised by highly genetic, serotype, and pathotypic variability. Despite extensive immunoprophylaxis strategies, the emergence of new genetic lineages is frequently observed in the field, causing disease control to be more complicated. In the last decade, the spread of variants assigned to the GI-23 lineage of IBV (formerly known as Var2) started from Middle-Eastern countries and reached Europe in the last few years. Recently, the introduction and fast spread of Var2-like IBVs in Poland was reported. In this study, the virulence properties and efficacy of different vaccination programmes were evaluated against infection with the IBV GI-23 strain gammaCoV/Ck/Poland/G052/2016. The pathogenicity of the Var2 isolate was conducted in one-day-old and three-week-old SPF chickens and showed that the course of the disease is age dependent. Seven vaccination programmes using Mass, 793B, QX alone or in combination, and Var2 live vaccines were tested against the GI-23 infectious bronchitis virus challenge. All groups were scored according to the ciliostasis test at 5 days post challenge. Two immunoprophylaxis strategies generated full protection against gammaCoV/Ck/Poland/G052/2016 infection—Var2 and Mass used in one-day-old chickens boosted by a combination of the QX and 793B vaccine (both with a ciliostasis score of 0 and 100% protection).

2018 ◽  
pp. 30-39 ◽  
Author(s):  
L. O. Scherbakova ◽  
S. N. Kolosov ◽  
Z. B. Nikonova ◽  
N. G. Zinyakov ◽  
Ye. V. Ovchinnikova ◽  
...  

Avian infectious bronchitis virus is a cause of major economic losses in poultry industry. However, control of the virus is very complicated due to its high variability. The mutation frequency in the hypervariable region of the S1 gene of the virus isolated from the vaccinated birds annually amounts to 1.5%. Long-term observations of the circulation of IBV isolates detected in a number of poultry farms demonstrated that the virus genetic lineages circulating on the poultry farms could eventually change. This stipulates the need for the continuous monitoring of the virus isolates for the prevention schedule optimization. The paper demonstrates test results of 840 biological samples collected from chickens on the poultry farms in Russia and some CIS countries in 2015–2017. From 311 positive samples 147 IBV isolates were recovered, the majority of which belonged to eight genetic lines of GI genotype: GI-1, GI-12, GI-13, GI-14, GI-16, GI-19, GI-22, GI-23. Moreover, recombinant isolates were detected as well as variant isolates that belonged to none of the known genotypes.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
Lei Zuo ◽  
Wenjun Yan ◽  
Zhou Song ◽  
Hao Li ◽  
Xin Xie ◽  
...  

Avian coronavirus infectious bronchitis virus (IBV) causes severe economic losses in the poultry industry, but its control is hampered by the continuous emergence of new genotypes and the lack of cross-protection among different IBV genotypes. We designed a new immunogen based on a spike with the consensus nucleotide sequence (S_con) that may overcome the extraordinary genetic diversity of IBV. S_con was cloned into a pVAX1 vector to form a new IBV DNA vaccine, pV-S_con. pV-S_con could be correctly expressed in HD11 cells with corresponding post-translational modification, and induced a neutralizing antibody response to the Vero-cell-adapted IBV strain Beaudette (p65) in mice. To further evaluate its immunogenicity, specific-pathogen-free (SPF) chickens were immunized with the pV-S_con plasmid and compared with the control pVAX1 vector and the H120 vaccine. Detection of IBV-specific antibodies and cell cytokines (IL-4 and IFN-γ) indicated that vaccination with pV-S_con efficiently induced both humoral and cellular immune responses. After challenge with the heterologous strain M41, virus shedding and virus loading in tissues was significantly reduced both by pV-S_con and its homologous vaccine H120. Thus, pV-S_con is a promising vaccine candidate for IBV, and the consensus approach is an appealing method for vaccine design in viruses with high variability.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Abdullah I. A. Al-Mubarak ◽  
Anwar A. G. Al-Kubati

Avian infectious bronchitis virus (IBV) is an evolving and dynamic virus that causes major economic losses for the poultry industry worldwide. Continuous evolution and emergence of new variants of this virus are the major challenges for controlling the disease with routine vaccination. Successful vaccination usually requires the use of a homologous vaccine, which in turn necessitates continuous investigation of the circulating strains. Herein, we performed a reverse transcriptase-polymerase chain reaction- (RT-PCR-) based investigation in broiler chicken flocks of the Eastern Region of Saudi Arabia. IBV was detected in 36.5% of the tested flocks (42 out of 115) from January 2012 to March 2014. Direct sequencing of hypervariable region-3 (HVR-3) of the Spike (S)-1 gene was performed, followed by phylogenetic analysis to determine the circulating IBV genotypes. Four lineages appear to coexist in this region, including the GI-13 or 4/91 IBV (31%), GI-16 or CK/CH/LDL/97I IBV (28.6%), GI-1 or Mass IBV (19%), and GI-23 or Middle East IBV (21.4%). The latter lineage include two subgroups: IS/720/99 IBV (16.7%) and IS/Variant2/98 IBV (4.7%). Some of the detections made in the 4/91 and Mass lineages are expected to belong to the vaccine strains. Lineages without a homologous vaccine in use (CK/CH/LDL/97I and Middle East) represent 50% of the isolates recovered in this study. Based on identity with the vaccine sequences, field observations, and frequent detection, these two lineages appear to be out of coverage of the IBV vaccines used in Saudi Arabia. This is the first time to identify Middle East lineage (IS/720/99 IBV and IS/Variant2/98 IBV) in the Eastern Region of Saudi Arabia.


2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Shaswath S. Chandrasekar ◽  
Brock Kingstad-Bakke ◽  
Chia-Wei Wu ◽  
M. Suresh ◽  
Adel M. Talaat

ABSTRACT Infectious bronchitis (IB) caused by infectious bronchitis virus (IBV) is currently a major threat to chicken health, with multiple outbreaks being reported in the United States over the past decade. Modified live virus (MLV) vaccines used in the field can persist and provide the genetic material needed for recombination and emergence of novel IBV serotypes. Inactivated and subunit vaccines overcome some of the limitations of MLV with no risk of virulence reversion and emergence of new virulent serotypes. However, these vaccines are weakly immunogenic and poorly protective. There is an urgent need to develop more effective vaccines that can elicit a robust, long-lasting immune response. In this study, we evaluate a novel adjuvant system developed from Quil-A and chitosan (QAC) for the intranasal delivery of nucleic acid immunogens to improve protective efficacy. The QAC adjuvant system forms nanocarriers (<100 nm) that efficiently encapsulate nucleic acid cargo, exhibit sustained release of payload, and can stably transfect cells. Encapsulation of plasmid DNA vaccine expressing IBV nucleocapsid (N) protein by the QAC adjuvant system (pQAC-N) enhanced immunogenicity, as evidenced by robust induction of adaptive humoral and cellular immune responses postvaccination and postchallenge. Birds immunized with pQAC-N showed reduced clinical severity and viral shedding postchallenge on par with protection observed with current commercial vaccines without the associated safety concerns. Presented results indicate that the QAC adjuvant system can offer a safer alternative to the use of live vaccines against avian and other emerging coronaviruses. IMPORTANCE According to 2017 U.S. agriculture statistics, the combined value of production and sales from broilers, eggs, turkeys, and chicks was $42.8 billion. Of this number, broiler sales comprised 67% of the industry value, with the production of >50 billion pounds of chicken meat. The economic success of the poultry industry in the United States hinges on the extensive use of vaccines to control infectious bronchitis virus (IBV) and other poultry pathogens. The majority of vaccines currently licensed for poultry health include both modified live vaccine and inactivated pathogens. Despite their proven efficacy, modified live vaccine constructs take time to produce and could revert to virulence, which limits their safety. The significance of our research stems from the development of a safer and potent alternative mucosal vaccine to replace live vaccines against IBV and other emerging coronaviruses.


2020 ◽  
Vol 7 (2) ◽  
pp. 79 ◽  
Author(s):  
Matteo Legnardi ◽  
Claudia Maria Tucciarone ◽  
Giovanni Franzo ◽  
Mattia Cecchinato

RNA viruses are characterized by high mutation and recombination rates, which allow a rapid adaptation to new environments. Most of the emerging diseases and host jumps are therefore sustained by these viruses. Rapid evolution may also hinder the understanding of molecular epidemiology, affect the sensitivity of diagnostic assays, limit the vaccine efficacy and favor episodes of immune escape, thus significantly complicating the control of even well-known pathogens. The history of infectious bronchitis virus (IBV) fits well with the above-mentioned scenario. Despite being known since the 1930s, it still represents one of the main causes of disease and economic losses for the poultry industry. A plethora of strategies have been developed and applied over time, with variable success, to limit its impact. However, they have rarely been evaluated objectively and on an adequate scale. Therefore, the actual advantages and disadvantages of IBV detection and control strategies, as well as their implementation, still largely depend on individual sensibility. The present manuscript aims to review the main features of IBV biology and evolution, focusing on their relevance and potential applications in terms of diagnosis and control.


Author(s):  
Yuan Yuan ◽  
Zhi-Peng Zhang ◽  
Yi-Ning He ◽  
Wen-Sheng Fan ◽  
Zhi-Hua Dong ◽  
...  

Avian infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis, which causes considerable economic losses to the poultry industry worldwide. It is imperative to develop safe and efficient candidate vaccines to control IBV infection. In the current study, recombinant baculoviruses co-expressing S1 and N proteins, mono-expressing S1 or N proteins alone of IBV were constructed and prepared into subunit vaccines rHBM-S1-N, rHBM-S1 and rHBM-N. The levels of immune protection of these subunit vaccines were evaluated by inoculating specific pathogen-free (SPF) chickens at 14 days of age, boosting with the same dose 14 days later, and following challenge with a virulent GX-YL5 strain of IBV 14 days post-booster (dpb). The commercial vaccine strain H120 was used as a control. The IBV-specific antibody levels as well as the percentages of CD4+ and CD8+ T lymphocytes were detected within 28 days post-vaccination (dpv). The morbidity, mortality, and re-isolation of virus from the tracheas and kidneys of challenged birds were evaluated at 5 days post-challenge (dpc). The results showed that the IBV-specific antibody levels and the percentages of CD4+ and CD8+ T lymphocyte in rHBM-S1-N group were higher than those of rHBM-S1 and rHBM-N groups, especially the cellular immunity response. At 5 dpc, the mortality, morbidity and virus re-isolation rate of rHBM-S1-N were slightly higher than those of H120 group, but were lower than those of rHBM-S1 group and rHBM-N group. The present study demonstrated that the protection of recombinant baculovirus co-expressing S1 and N proteins was better than that of recombinant baculoviruses mono-expressing S1 or N protein alone. Thus, the recombinant baculovirus co-expressing S1 and N proteins could serve as a potential IBV vaccine and this demonstrates that the bivalent subunit vaccine including the S1 and N proteins might be a strategy for the development of an IBV subunit vaccine.


2020 ◽  
Vol 7 (4) ◽  
pp. 204
Author(s):  
Hassanein H. Abozeid ◽  
Mahmoud M. Naguib

Infectious bronchitis virus (IBV) is a highly evolving avian pathogen that has increasingly imposed a negative impact on poultry industry worldwide. In the last 20 years, IBV has been continuously circulating among chicken flocks in Egypt causing huge economic losses to poultry production. Multiple IBV genotypes, namely, GI-1, GI-13, GI-16, and GI-23 have been reported in Egypt possessing different genetic and pathogenic features. Different vaccine programs are being used to control the spread of the disease in Egypt. However, the virus continues to spread and evolve where multiple IBV variants and several recombination evidence have been described. In this review, we highlight the current knowledge concerning IBV circulation, genesis, and vaccination strategies in Egypt. In addition, we analyze representative Egyptian IBV strains from an evolutionary perspective based on available data of their S1 gene. We also provide insight into the importance of surveillance programs and share our perspectives for better control of IBV circulating in Egypt.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 605 ◽  
Author(s):  
Mohammed A. Rohaim ◽  
Rania F. El Naggar ◽  
Mohammed A. Abdelsabour ◽  
Mahmoud H. A. Mohamed ◽  
Ibrahim M. El-Sabagh ◽  
...  

In the last 5 years, frequent outbreaks of infectious bronchitis virus (IBV) are observed in both broiler and layer chicken flocks in the Kingdom of Saudi Arabia (KSA) in spite of extensive usage of vaccines. The IBV is a widespread avian coronavirus affecting both vaccinated and unvaccinated chicken flocks and is attributed to significant economic losses, around the globe. In the present study, 58 (n = 58) samples were collected from four different commercial poultry flocks from 8 KSA districts during 2019. A total of nine positive isolates (9/58; 15.5%), based on real-time reverse transcriptase PCR targeting nucleocapsid (N) gene, were used for further genetic characterization and evolutionary analysis. Genetic characterization of the partial spike (S1) gene revealed the clustering of the reported isolates into three different genotypes, whereas four additional isolates were grouped within 4/91 genotype, two isolates within IS/885 genotype, one isolate was closely related to IS/1494/06, and two isolates were grouped within classic serotype (vaccine-like strains). Phylodynamic revealed clustering of four isolated viruses within GI-13 lineage, three isolates within GI-23 lineage, and two isolates within GI-1 lineage. Results indicate that there are high evolutionary distances between the newly identified IBV strains in this study and the commercially used vaccines (GI-1), suggesting that IBV strains circulating in the KSA are under constant evolutionary pressures. Selective pressure biostatistics analyses consistently demonstrate the presence of a higher positive score which highlights the role of natural selection, a mechanism of virus evolution on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. Recombination analysis revealed emergence of two isolates through recombination events resulting in new recombinant viruses. Taken together, these finding demonstrate the genetic and evolutionary insights into the currently circulating IBV genotypes in KSA, which could help to better understand the origin, spread, and evolution of infectious bronchitis viruses, and to ascertain the importance of disease monitoring as well as re-evaluation for the currently used vaccines and vaccination programs.


Sign in / Sign up

Export Citation Format

Share Document