scholarly journals Whole Genome Sequence Analysis of Mycobacterium bovis Cattle Isolates, Algeria

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 802
Author(s):  
Fatah Tazerart ◽  
Jamal Saad ◽  
Naima Sahraoui ◽  
Djamel Yala ◽  
Abdellatif Niar ◽  
...  

Mycobacterium bovis (M. bovis), a Mycobacterium tuberculosis complex species responsible for tuberculosis in cattle and zoonotic tuberculosis in humans, is present in Algeria. In Algeria however, the M. bovis population structure is unknown, limiting understanding of the sources and transmission of bovine tuberculosis. In this study, we identified the whole genome sequence (WGS) of 13 M. bovis strains isolated from animals exhibiting lesions compatible with tuberculosis, which were slaughtered and inspected in five slaughterhouses in Algeria. We found that six isolates were grouped together with reference clinical strains of M. bovis genotype-Unknown2. One isolate was related to M. bovis genotype-Unknown7, one isolate was related to M. bovis genotype-Unknown4, three isolates belonged to M. bovis genotype-Europe 2 and there was one new clone for two M. bovis isolates. Two isolates from Blida exhibited no pairwise differences in single nucleotide polymorphisms. None of these 13 isolates were closely related to four zoonotic M. bovis isolates previously characterized in Algeria. In Algeria, the epidemiology of bovine tuberculosis in cattle is partly driven by cross border movements of animals and animal products.

2021 ◽  
Author(s):  
Tofazzal Islam ◽  
Nadia Afroz ◽  
ChuShin Koh ◽  
M. Nazmul Haque ◽  
Md. Jillur Rahman ◽  
...  

Abstract Background Jackfruit (Artocarpus heterophyllus Lam.) is a tropical and sub-tropical fruit tree distributed in Asia, Africa, and South America. It is the national fruit of Bangladesh and produces fruit in the summer season only. However, a year-round jackfruit variety, BARI Kanthal-3 developed by Bangladesh Agricultural Research Institute (BARI) provides fruits from September to June. This study aimed to evaluate the agronomic performance of BARI Kanthal-3 and to generate a draft whole genome sequence to obtain molecular insights of this important unique variety. Results Number of fruits, average each fruit weight, fruit yield per plant, edible portion in fruit and ß carotene content of BARI Kanthal-3 (n = 5) were 422/plant/year, 5.60 kg, 236.32 kg/year, 53.5% and 3614 mg/100g, respectively. During de novo assembly, 817.7 Mb of the BARI Kanthal-3 genome was scaffolded. However, in the reference-guided genome assembly, almost 843 Mb of the BARI Kanthal-3 genome was scaffolded. Through BUSCO assessment, 97.2% of the core genes were represented in the assembly with 1.3% and 1.5% either fragmented or missing, respectively. By comparing the single copy orthologues (SCOs) in three closely and one distantly related species of BARI Kanthal-3, 706 SCOs were found to be shared across the genomes of the five species. The phylogenetic analysis of the shared SCOs showed that A. heterophyllus is the closest species to BARI Kantal-3. The estimated genome size of BARI Kanthal-3 was 1.04 giga base pairs (Gbp) with a heterozygosity rate of 1.62%. The estimated GC content was 34.10%. Variant analysis revealed that BARI Kanthal-3 includes 5.7 M (35%) and 10.4 M (65%) simple and heterozygous single nucleotide polymorphisms (SNPs), and about 90% of all these polymorphisms are located in inter-genic regions. Conclusion The whole-genome sequence of A. heterophyllus cv. BARI Kanthal-3 reveals extremely high single nucleotide polymorphisms in inter-genic regions. The findings of this study will help better understanding the evolution, domestication, phylogenetic relationships, year-round fruiting and the markers development for molecular breeding of this highly nutritious fruit crop.


2021 ◽  
Vol 9 (3) ◽  
pp. 570
Author(s):  
Maphuti Betty Ledwaba ◽  
Barbara Akorfa Glover ◽  
Itumeleng Matle ◽  
Giuseppe Profiti ◽  
Pier Luigi Martelli ◽  
...  

The availability of whole genome sequences in public databases permits genome-wide comparative studies of various bacterial species. Whole genome sequence-single nucleotide polymorphisms (WGS-SNP) analysis has been used in recent studies and allows the discrimination of various Brucella species and strains. In the present study, 13 Brucella spp. strains from cattle of various locations in provinces of South Africa were typed and discriminated. WGS-SNP analysis indicated a maximum pairwise distance ranging from 4 to 77 single nucleotide polymorphisms (SNPs) between the South African Brucella abortus virulent field strains. Moreover, it was shown that the South African B. abortus strains grouped closely to B. abortus strains from Mozambique and Zimbabwe, as well as other Eurasian countries, such as Portugal and India. WGS-SNP analysis of South African B. abortus strains demonstrated that the same genotype circulated in one farm (Farm 1), whereas another farm (Farm 2) in the same province had two different genotypes. This indicated that brucellosis in South Africa spreads within the herd on some farms, whereas the introduction of infected animals is the mode of transmission on other farms. Three B. abortus vaccine S19 strains isolated from tissue and aborted material were identical, even though they originated from different herds and regions of South Africa. This might be due to the incorrect vaccination of animals older than the recommended age of 4–8 months or might be a problem associated with vaccine production.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1794
Author(s):  
Elizabeth Sage Hunter ◽  
Robert Literman ◽  
Sara M. Handy

The botanical genus Digitalis is equal parts colorful, toxic, and medicinal, and its bioactive compounds have a long history of therapeutic use. However, with an extremely narrow therapeutic range, even trace amounts of Digitalis can cause adverse effects. Using chemical methods, the United States Food and Drug Administration traced a 1997 case of Digitalis toxicity to a shipment of Plantago (a common ingredient in dietary supplements marketed to improve digestion) contaminated with Digitalis lanata. With increased accessibility to next generation sequencing technology, here we ask whether this case could have been cracked rapidly using shallow genome sequencing strategies (e.g., genome skims). Using a modified implementation of the Site Identification from Short Read Sequences (SISRS) bioinformatics pipeline with whole-genome sequence data, we generated over 2 M genus-level single nucleotide polymorphisms in addition to species-informative single nucleotide polymorphisms. We simulated dietary supplement contamination by spiking low quantities (0–10%) of Digitalis whole-genome sequence data into a background of commonly used ingredients in products marketed for “digestive cleansing” and reliably detected Digitalis at the genus level while also discriminating between Digitalis species. This work serves as a roadmap for the development of novel DNA-based assays to quickly and reliably detect the presence of toxic species such as Digitalis in food products or dietary supplements using genomic methods and highlights the power of harnessing the entire genome to identify botanical species.


2018 ◽  
Vol 7 (23) ◽  
Author(s):  
Massimiliano Orsini ◽  
Marina Torresi ◽  
Claudio Patavino ◽  
Patrizia Centorame ◽  
Antonio Rinaldi ◽  
...  

We report the whole-genome sequence of a Listeria monocytogenes strain isolated from a child in central Italy. Interestingly, the sequence showed a difference of only 13 single-nucleotide polymorphisms (SNPs) from a strain responsible for a severe listeriosis outbreak that occurred between January 2015 and March 2016 in the same region.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 318
Author(s):  
Md. Bazlur Rahman Mollah ◽  
Md. Shamsul Alam Bhuiyan ◽  
M.A.M. Yahia Khandoker ◽  
Md. Abdul Jalil ◽  
Gautam Kumar Deb ◽  
...  

The Black Bengal goat (BBG) is a dwarf sized heritage goat (Capra hircus) breed from Bangladesh, and is well known for its high fertility, excellent meat and skin quality. Here we present the first whole genome sequence and genome-wide distributed single nucleotide polymorphisms (SNPs) of the BBG. A total of 833,469,900 raw reads consisting of 125,020,485,000 bases were obtained by sequencing one male BBG sample. The reads were aligned to the San Clemente and the Yunnan black goat genome which resulted in 98.65% (properly paired, 94.81%) and 98.50% (properly paired, 97.10%) of the reads aligning, respectively. Notably, the estimated sequencing coverages were 48.22X and 44.28X compared to published San Clemente and the Yunnan black goat genomes respectively. On the other hand, a total of 9,497,875 high quality SNPs (Q ≥ 20) along with 1,023,359 indels, and 8,746,849 high quality SNPs along with 842,706 indels were identified in BBG against the San Clemente and Yunnan black goat genomes respectively. The dataset is publicly available from NCBI BioSample (SAMN10391846), Sequence Read Archive (SRR8182317, SRR8549413 and SRR8549904), with BioProject ID PRJNA504436. These data might be useful genomic resources in conducting genome wide association studies, identification of quantitative trait loci (QTLs) and functional genomic analysis of the Black Bengal goat.


2019 ◽  
Author(s):  
Xin Zhou ◽  
Lu Zhang ◽  
Ziming Weng ◽  
David L. Dill ◽  
Arend Sidow

AbstractVariant discovery in personal, whole genome sequence data is critical for uncovering the genetic contributions to health and disease. We introduce a new approach, Aquila, that uses linked-read data for generating a high quality diploid genome assembly, from which it then comprehensively detects and phases personal genetic variation. Assemblies cover >95% of the human reference genome, with over 98% in a diploid state. Thus, the assemblies support detection and accurate genotyping of the most prevalent types of human genetic variation, including single nucleotide polymorphisms (SNPs), small insertions and deletions (small indels), and structural variants (SVs), in all but the most difficult regions. All heterozygous variants are phased in blocks that can approach arm-level length. The final output of Aquila is a diploid and phased personal genome sequence, and a phased VCF file that also contains homozygous and a few unphased heterozygous variants. Aquila represents a cost-effective evolution of whole-genome reconstruction that can be applied to cohorts for variation discovery or association studies, or to single individuals with rare phenotypes that could be caused by SVs or compound heterozygosity.


2017 ◽  
Vol 5 (14) ◽  
Author(s):  
Kerri M. Malone ◽  
Damien Farrell ◽  
Tod P. Stuber ◽  
Olga T. Schubert ◽  
Ruedi Aebersold ◽  
...  

ABSTRACT We report here an update to the reference genome sequence of the bovine tuberculosis bacillus Mycobacterium bovis AF2122/97, generated using an integrative multiomics approach. The update includes 42 new coding sequences (CDSs), 14 modified annotations, 26 single-nucleotide polymorphism (SNP) corrections, and disclosure that the RD900 locus, previously described as absent from the genome, is in fact present.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Cheng ◽  
Keyu Xu ◽  
Jinghui Li ◽  
Kuruvilla Joseph Abraham

Low-cost genome-wide single-nucleotide polymorphisms (SNPs) are routinely used in animal breeding programs. Compared to SNP arrays, the use of whole-genome sequence data generated by the next-generation sequencing technologies (NGS) has great potential in livestock populations. However, sequencing a large number of animals to exploit the full potential of whole-genome sequence data is not feasible. Thus, novel strategies are required for the allocation of sequencing resources in genotyped livestock populations such that the entire population can be imputed, maximizing the efficiency of whole genome sequencing budgets. We present two applications of linear programming for the efficient allocation of sequencing resources. The first application is to identify the minimum number of animals for sequencing subject to the criterion that each haplotype in the population is contained in at least one of the animals selected for sequencing. The second application is the selection of animals whose haplotypes include the largest possible proportion of common haplotypes present in the population, assuming a limited sequencing budget. Both applications are available in an open source program LPChoose. In both applications, LPChoose has similar or better performance than some other methods suggesting that linear programming methods offer great potential for the efficient allocation of sequencing resources. The utility of these methods can be increased through the development of improved heuristics.


Sign in / Sign up

Export Citation Format

Share Document