scholarly journals Effectiveness of Disinfection with Chlorine Dioxide on Respiratory Transmitted, Enteric, and Bloodborne Viruses: A Narrative Synthesis

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1017
Author(s):  
Michele Totaro ◽  
Federica Badalucco ◽  
Anna Laura Costa ◽  
Benedetta Tuvo ◽  
Beatrice Casini ◽  
...  

A viral spread occurrence such as the SARS-CoV-2 pandemic has prompted the evaluation of different disinfectants suitable for a wide range of environmental matrices. Chlorine dioxide (ClO2) represents one of the most-used virucidal agents in different settings effective against both enveloped and nonenveloped viruses. This narrative synthesis is focused on the effectiveness of ClO2 applied in healthcare and community settings in order to eliminate respiratory transmitted, enteric, and bloodborne viruses. Influenza viruses were reduced by 99.9% by 0.5–1.0 mg/L of ClO2 in less than 5 min. Higher concentration (20 mg/L) eliminated SARS-CoV-2 from sewage. ClO2 concentrations from 0.2 to 1.0 mg/L ensured at least a 99% viral reduction of AD40, HAV, Coxsackie B5 virus, and other enteric viruses in less than 30 min. Considering bloodborne viruses, 30 mg/L of ClO2 can eliminate them in 5 min. Bloodborne viruses (HIV-1, HCV, and HBV) may be completely eliminated from medical devices and human fluids after a treatment with 30 mg/L of ClO2 for 30 min. In conclusion, ClO2 is a versatile virucidal agent suitable for different environmental matrices.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaohong Zhou ◽  
Christina Monnie ◽  
Maria DeLucia ◽  
Jinwoo Ahn

Abstract Background Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. Methods HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein–protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. Results We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, Conclusions Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.



Author(s):  
Madeleine Evans Webb ◽  
Elizabeth Murray ◽  
Zane William Younger ◽  
Henry Goodfellow ◽  
Jamie Ross

AbstractCancer, and the complex nature of treatment, has a profound impact on lives of patients and their families. Subsequently, cancer patients have a wide range of needs. This study aims to identify and synthesise cancer patients’ views about areas where they need support throughout their care. A systematic  search of the literature from PsycInfo, Embase and Medline databases was conducted, and a narrative. Synthesis of results was carried out using the Corbin & Strauss “3 lines of work” framework. For each line of work, a group of key common needs were identified. For illness-work, the key needs idenitified were; understanding their illness and treatment options, knowing what to expect, communication with healthcare professionals, and staying well. In regards to everyday work, patients wanted to maintain a sense of normalcy and look after their loved ones. For biographical work, patients commonly struggled with the emotion impact of illness and a lack of control over their lives. Spiritual, sexual and financial problems were less universal. For some types of support, demographic factors influenced the level of need reported. While all patients are unique, there are a clear set of issues that are common to a majority of cancer journeys. To improve care, these needs should be prioritised by healthcare practitioners.



2007 ◽  
Vol 23 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Inês Dourado ◽  
Craig A. Milroy ◽  
Marco Antônio Gomes Mello ◽  
Geraldo Argolo Ferraro ◽  
Humberto Castro-Lima Filho ◽  
...  

To estimate HIV-1 seroprevalence in the general population of Salvador, Bahia, Brazil, we conducted a cross-sectional survey of 3,437 residents from 1998 to 2000. Subjects were drawn from 30 sentinel areas representing a wide range of living conditions. Plasma samples were screened for HIV-1 antibodies by ELISA and confirmed by immunofluorescent assay. Subtype determination by HMA was performed after proviral DNA amplification. Phylogenetic analysis using parsimony was performed with the neighbor-joining method. Overall HIV-1 seroprevalence was 0.55% (19/3,446): 0.8% for men and 0.36% for women. Seroprevalence was higher in the 31-45-year age group (1%) and among persons with family income less than twice the minimum wage (0.78%) as compared to 0.33% for the higher income group. Syphilis was detected in 37% of HIV seropositive individuals. Phylogenetic inferences identified 10 samples as subtype B in the env region and 2 samples with Benv/Fgag/Fpol and Fenv/Bgag. Age > 30 years, male gender, and income < 2 times the minimum wage were identified as risk factors for HIV-1 infection. Extrapolating the proportion of seropositive individuals to Salvador, the number of HIV-1 infected individuals was estimated at 13,750.



2021 ◽  
Author(s):  
Clare M. Williams ◽  
Sreeja Roy ◽  
Danielle Califano ◽  
Andrew N. J. McKenzie ◽  
Dennis W. Metzger ◽  
...  

Interleukin (IL)-33 is a multifunctional cytokine that mediates type 2 dominated immune responses. In contrast, the role of IL-33 during viral vaccination, which often aims to induce type 1 immunity, has not been fully investigated. Here we examined the effects of IL-33 on influenza vaccine responses. We found that intranasal co-administration of IL-33 with an inactivated influenza virus vaccine increases the vaccine efficacy against influenza infection, not only with the homologous strain, but also heterologous strains including the 2009 H1N1 influenza pandemic strain. The cross-protection was dependent on group 2 innate lymphoid cells (ILC2s), as the beneficial effect of IL-33 on vaccine efficacy was abrogated in ILC2-deficient C57BL/6 Il7r P Cre/+ P Rora P fl/fl P mice. Further, mechanistic studies revealed that IL-33 activated ILC2s potentiate vaccine efficacy by enhancing mucosal humoral immunity, particularly IgA responses, potentially via a Th2 cytokine dependent manner. Our results demonstrate that IL-33-mediated activation of ILC2s is a critical early event that is important for the induction of mucosal humoral immunity, which in turn is responsible for cross-strain protection against influenza. Thus, we reveal a previously unrecognized role for the IL-33/ILC2 axis in establishing broadly protective and long-lasting humoral mucosal immunity against influenza – knowledge that may help develop a universal influenza vaccine. Importance Current influenza vaccines, although capable of protecting against predicted viruses/strains included in the vaccine, are inept at providing cross-protection against emerging/novel strains. Thus, we are in critical need for a universal vaccine that can protect against a wide range of influenza viruses. Our novel findings show that a mucosal vaccination strategy involving the activation of lung ILC2s is highly effective in eliciting cross-protective humoral immunity in the lungs. This suggests that the biology of lung ILC2s can be exploited to increase the cross-reactivity of commercially available influenza subunit vaccines.



Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 528
Author(s):  
Brenda Aline Maya-Badillo ◽  
Rafael Ojeda-Flores ◽  
Andrea Chaves ◽  
Saul Reveles-Félix ◽  
Guillermo Orta-Pineda ◽  
...  

Influenza, a zoonosis caused by various influenza A virus subtypes, affects a wide range of species, including humans. Pig cells express both sialyl-α-2,3-Gal and sialyl-α-2,6-Gal receptors, which make them susceptible to infection by avian and human viruses, respectively. To date, it is not known whether wild pigs in Mexico are affected by influenza virus subtypes, nor whether this would make them a potential risk of influenza transmission to humans. In this work, 61 hogs from two municipalities in Campeche, Mexico, were sampled. Hemagglutination inhibition assays were performed in 61 serum samples, and positive results were found for human H1N1 (11.47%), swine H1N1 (8.19%), and avian H5N2 (1.63%) virus variants. qRT-PCR assays were performed on the nasal swab, tracheal, and lung samples, and 19.67% of all hogs were positive to these assays. An avian H5N2 virus, first reported in 1994, was identified by sequencing. Our results demonstrate that wild pigs are participating in the exposure, transmission, maintenance, and possible diversification of influenza viruses in fragmented habitats, highlighting the synanthropic behavior of this species, which has been poorly studied in Mexico.



1993 ◽  
Vol 14 (9) ◽  
pp. 527-529 ◽  
Author(s):  
R. Wesley Farr ◽  
Cheryl Walton

AbstractObjective:To study the ability of a medical waste disposal process using chlorine dioxide to inactivate human immunodeficiency virus type 1 (HIV 1).Design:Stock HIV-1 (HTLV-IIIB strain) was treated with chlorine dioxide under the following settings: cell culture medium alone, culture medium with 25% blood, culture medium with medical supplies treated by the Condor machine (Winfield Environmental Corp., Escondido, CA). MT-2 cells in 96-well tissue culture plates were inoculated with serial tenfold dilutions of treated and untreated HIV-1. Cytopathic effect was read on day five, and the TCID50 (50% tissue culture infectious dose) was calculated.Results:Treatment of HIV-1 with chlorine dioxide in culture medium alone resulted in a 5.25 log10 reduction in TCID50. Treatment of HIV-1 with chlorine dioxide in the presence of 25% blood caused a 6.25 log10 reduction in HIV-1 infectivity Treatment of HIV-1 with chlorine dioxide in the presence of medical supplies treated in the Condor machine resulted in a 4.75 log10 reduction in HIV infectivity.Conclusions:Chlorine dioxide inactivated HIV-1 in vitro. Chlorine dioxide inactivated HIV-1 in the presence of blood and in the presence of medical supplies under conditions that simulated the conditions existing in the Condor machine.



Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1167-1174 ◽  
Author(s):  
Francesco Annunziato ◽  
Grazia Galli ◽  
Filomena Nappi ◽  
Lorenzo Cosmi ◽  
Roberto Manetti ◽  
...  

Human T helper (Th) cells (Th1- or Th2-oriented memory T cells as well as Th1- or Th2-polarized naive T cells) were infected in vitro with an R5-tropic HIV-1 strain (BaL) and assessed for their profile of cytokine production, CCR5 receptor expression, and HIV-1 p24 antigen (p24 Ag) production. Higher p24 Ag production was found in CCR5-negative Th2-like memory T cells than in CCR5-positive Th1-like memory T cells. By contrast, p24 Ag production was higher in Th1-polarized activated naive T cells in the first 4 days after infection. However, p24 Ag production in Th1-polarized T cells became comparable or even lower than the production in Th2-polarized populations later in infection or when the cells were infected with HIV-1BaL after secondary stimulation. The higher levels of p24 Ag production by Th1-polarized naive T cells soon after infection reflected a higher virus entry, as assessed by the single round infection assay using the HIV–chloramphenicol acetyl transferase (HIV-CAT) R5-tropic virus that contains the envelope protein of HIV-1 YU2 strain. The limitation of viral spread in the Th1-polarized populations, despite the initial higher level of T-cell entry of R5-tropic strains, was due to the ability of Th1 cells to produce greater amounts of β-chemokines than Th2 cells. In fact, an inverse correlation was observed between Th1-polarized naive T cells and Th1-like memory-activated T cells in regards to p24 Ag production and the release of the following CCR5-binding chemokines: regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein–1 (MIP-1), and MIP-1β. Moreover, infection with the HIV-1BaL strain of Th1-polarized T cells in the presence of a mixture of anti-RANTES, anti–MIP-1, and anti–MIP-1β neutralizing antibodies resulted in a significant increase of HIV-1 expression. These findings suggest that Th1-type responses may favor CD4+ T-cell infection by R5-tropic HIV-1 strains, but HIV-1 spread in Th1 cells is limited by their ability to produce CCR5-binding chemokines.



2010 ◽  
Vol 54 (6) ◽  
pp. 2517-2524 ◽  
Author(s):  
Katrina Sleeman ◽  
Vasiliy P. Mishin ◽  
Varough M. Deyde ◽  
Yousuke Furuta ◽  
Alexander I. Klimov ◽  
...  

ABSTRACT Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic (pdm) potential (swine triple reassortants, H2N2, H4N2, avian H7N2, and avian H5N1), including viruses which are resistant to the currently licensed anti-influenza drugs. All viruses were tested in a plaque reduction assay with MDCK cells, and a subset was also tested in both yield reduction and focus inhibition (FI) assays. For the majority of viruses tested, favipiravir significantly inhibited plaque formation at 3.2 μM (0.5 μg/ml) (50% effective concentrations [EC50s] of 0.19 to 22.48 μM and 0.03 to 3.53 μg/ml), and for all viruses, with the exception of a single dually resistant 2009 A(H1N1) virus, complete inhibition of plaque formation was seen at 3.2 μM (0.5 μg/ml). Due to the 2009 pandemic and increased drug resistance in circulating seasonal influenza viruses, there is an urgent need for new drugs which target influenza. This study demonstrates that favipiravir inhibits in vitro replication of a wide range of influenza viruses, including those resistant to currently available drugs.



2003 ◽  
Vol 47 (10) ◽  
pp. 3109-3116 ◽  
Author(s):  
Miguel Stevens ◽  
Christophe Pannecouque ◽  
Erik De Clercq ◽  
Jan Balzarini

ABSTRACT We have found that novel pyridine oxide derivatives are inhibitors of a wide range of human immunodeficiency virus (HIV) type 1 (HIV-1) and HIV-2 strains in CEM cell cultures. Some of the compounds showed inhibitory activities against recombinant HIV-1 reverse transcriptase (RT), whereas others were totally inactive against this viral protein in vitro. Partial retention of anti-HIV-1 activity against virus strains that contain a variety of mutations characteristic of those for resistance to nonnucleoside RT inhibitors and a lack of inhibitory activity against recombinant HIV-2 RT suggested that these pyridine oxide derivatives possess a mode of antiviral action independent from HIV RT inhibition. Time-of-addition experiments revealed that these pyridine oxide derivatives interact at a postintegration step in the replication cycle of HIV. Furthermore, it was shown that these compounds are active not only in acutely HIV-1-infected cells but also in chronically HIV-infected cells. A dose-dependent inhibition of virus particle release and viral protein expression was observed upon exposure to the pyridine oxide derivatives. Finally, inhibition of HIV-1 long terminal repeat-mediated green fluorescence protein expression in quantitative transactivation bioassays indicated that the additional target of action of the pyridine oxide derivatives may be located at the level of HIV gene expression.



2004 ◽  
Vol 78 (11) ◽  
pp. 5835-5847 ◽  
Author(s):  
Deborah J. Lee ◽  
W. E. Robinson

ABSTRACT The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3′-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.



Sign in / Sign up

Export Citation Format

Share Document