scholarly journals Regulatory Effect of Irresistin-16 on Competitive Dual-Species Biofilms Composed of Streptococcus mutans and Streptococcus sanguinis

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Xiangyu Hu ◽  
Min Wang ◽  
Yan Shen ◽  
Lingjun Zhang ◽  
Yihuai Pan ◽  
...  

Based on the ecological plaque hypothesis, suppressing opportunistic pathogens within biofilms, rather than killing microbes indiscriminately, could be a biofilm control strategy for managing dental caries. The present study aimed to evaluate the effects of irresistin-16 (IRS-16) on competitive dual-species biofilms, which consisted of the conditional cariogenic agent Streptococcus mutans (S. mutans) and oral commensal bacteria Streptococcus sanguinis (S. sanguinis). Bacterial growth and biofilm formation were monitored using growth curve and crystal violet staining, respectively. The microbial proportion was determined using fluorescence in situ hybridization. A 2, 5-diphenyltetrazolium bromide assay was used to measure the metabolic activity of biofilms. Bacterial/extracellular polysaccharide (EPS) dyeing, together with water-insoluble EPS measurements, were used to estimate EPS synthesis. A lactic acid assay was performed to detect lactic acid generation in biofilms. The cytotoxicity of IRS-16 was evaluated in mouse fibroblast L929 cells using a live/dead cell viability assay and cell counting kit-8 assay. Our results showed that IRS-16 exhibited selective anti-biofilm activity, leading to a remarkable survival disadvantage of S. mutans within competitive dual-species biofilms. In addition, the metabolic activity, EPS synthesis, and acid generation of dual-species biofilms were significantly reduced by IRS-16. Moreover, IRS-16 showed minimal cytotoxicity against mouse fibroblast L929 cells. In conclusion, IRS-16 exhibited remarkable regulatory effects on dual-species biofilms composed of S. mutans and S. sanguinis with low cytotoxicity, suggesting that it may have potential for use in caries management through ecological biofilm control.

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yan Sun ◽  
Yihuai Pan ◽  
Yu Sun ◽  
Mingyun Li ◽  
Shengbin Huang ◽  
...  

The present study aimed at investigating the influence of norspermidine on the formation of dual-species biofilms composed of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S. sanguinis). Crystal violet assay was conducted to assess the formation of single-species biofilms of S. mutans and S. sanguinis, and the growth curve was carefully observed to monitor the growth of these two species of bacteria. Fluorescence in situ hybridization (FISH) and MTT array were used to analyze the composition and metabolic activity of the dual-species biofilms, respectively. Extracellular polysaccharides (EPS)/bacteria staining, anthrone method, and scanning electron microscopy (SEM) imaging were conducted to study the synthesis of EPS by dual-species biofilms. Lactic acid assay and pH were measured to detect dual-species biofilm acid production. We found that norspermidine had different effects on S. mutans and S. sanguinis including their growth and biofilm formation. Norspermidine regulated the composition of the dual-species biofilms, decreased the ratio of S. mutans in dual-species biofilms, and reduced the metabolic activity, EPS synthesis, and acid production of dual-species biofilms. Norspermidine regulated dual-species biofilms in an ecological way, suggesting that it may be a potent reagent for controlling dental biofilms and managing dental caries.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Sun ◽  
Wentao Jiang ◽  
Mingzheng Zhang ◽  
Lingjun Zhang ◽  
Yan Shen ◽  
...  

To investigate the effects of ficin on biofilm formation of conditionally cariogenic Streptococcus mutans (S. mutans). Biomass and metabolic activity of biofilm were assessed using crystal violet assay, colony-forming unit (CFU) counting, and MTT assay. Extracellular polysaccharide (EPS) synthesis was displayed by SEM imaging, bacteria/EPS staining, and anthrone method while acid production was revealed by lactic acid assay. Growth curve and live/dead bacterial staining were conducted to monitor bacterial growth state in both planktonic and biofilm form. Total protein and extracellular proteins of S. mutans biofilm were analyzed by protein/bacterial staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), severally. qRT-PCR was conducted to detect acid production, acid tolerance, and biofilm formation associated genes. Crystal violet assay, CFU counting, and MTT assay showed that the suppression effect of ficin on S. mutans biofilm formation was concentration dependent. 4 mg/mL ficin had significant inhibitory effect on S. mutans biofilm formation including biomass, metabolic activity, EPS synthesis, and lactic acid production ( p < 0.05 ). The growth curves from 0 mg/mL to 4 mg/mL ficin were aligned with each other. There was no significant difference among different ficin groups in terms of live/dead bacterial staining result ( p > 0.05 ). Protein/bacterial staining outcome indicated that ficin inhibit both total protein and biofilm formation during the biofilm development. There were more relatively small molecular weight protein bands in extracellular proteins of 4 mg/mL ficin group when compared with the control. Generally, ficin could inhibit biofilm formation and reduce cariogenic virulence of S. mutans effectively in vitro; thus, it could be a potential anticaries agent.


2018 ◽  
Vol 15 (8) ◽  
pp. 843-850
Author(s):  
Malgorzata Miazga-Karska ◽  
Maciej Wos ◽  
Agnieszka A. Kaczor ◽  
Anna Pachuta-Stec ◽  
Grazyna Ginalska ◽  
...  

2019 ◽  
Vol 96 ◽  
pp. 539-551 ◽  
Author(s):  
Michele Savaris ◽  
Charlene Silvestrin Celi Garcia ◽  
Mariana Roesch-Ely ◽  
João Antonio Pêgas Henriques ◽  
Venina dos Santos ◽  
...  

Author(s):  
Xiurui Ma ◽  
Zhen Dong ◽  
Jingyi Liu ◽  
Leilei Ma ◽  
Xiaolei Sun ◽  
...  

Abstract Purpose Ketone body oxidation yields more ATP per mole of consumed oxygen than glucose. However, whether an increased ketone body supply in hypoxic cardiomyocytes and ischemic hearts is protective or not remains elusive. The goal of this study is to determine the effect of β-hydroxybutyrate (β-OHB), the main constituent of ketone bodies, on cardiomyocytes under hypoxic conditions and the effects of ketogenic diet (KD) on cardiac function in a myocardial infarction (MI) mouse model. Methods Human peripheral blood collected from patients with acute myocardial infarction and healthy volunteers was used to detect the level of β-OHB. N-terminal proB-type natriuretic peptide (NT-proBNP) levels and left ventricular ejection fractions (LVEFs) were measured to study the relationship between plasma β-OHB and cardiac function. Adult mouse cardiomyocytes and MI mouse models fed a KD were used to research the effect of β-OHB on cardiac damage. qPCR, western blot analysis, and immunofluorescence were used to detect the interaction between β-OHB and glycolysis. Live/dead cell staining and imaging, lactate dehydrogenase, Cell Counting Kit-8 assays, echocardiography, and 2,3,5-triphenyltetrazolium chloride staining were performed to evaluate the cardiomyocyte death, cardiac function, and infarct sizes. Results β-OHB level was significantly higher in acute MI patients and MI mice. Treatment with β-OHB exacerbated cardiomyocyte death and decreased glucose absorption and glycolysis under hypoxic conditions. These effects were partially ameliorated by inhibiting hypoxia-inducible factor 1α (HIF-1α) degradation via roxadustat administration in hypoxia-stimulated cardiomyocytes. Furthermore, β-OHB metabolisms were obscured in cardiomyocytes under hypoxic conditions. Additionally, MI mice fed a KD exhibited exacerbated cardiac dysfunction compared with control chow diet (CD)-fed MI mice. Conclusion Elevated β-OHB levels may be maladaptive to the heart under hypoxic/ischemic conditions. Administration of roxadustat can partially reverse these harmful effects by stabilizing HIF-1α and inducing a metabolic shift toward glycolysis for energy production.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3779 ◽  
Author(s):  
Mateusz Sikora ◽  
Klaudia Marcinkowska ◽  
Krzysztof Marycz ◽  
Rafał Jakub Wiglusz ◽  
Agnieszka Śmieszek

Osteosarcoma (OSA) is malignant bone tumor, occurring in children and adults, characterized by poor prognosis. Despite advances in chemotherapy and surgical techniques, the survival of osteosarcoma patients is not improving significantly. Currently, great efforts are taken to identify novel selective strategies, distinguishing between cancer and normal cells. This includes development of biomimetic scaffolds with anticancer properties that can simultaneously support and modulate proper regeneration of bone tissue. In this study cytotoxicity of scaffolds composed from poly (L-lactic acid) functionalized with nanohydroxyapatite (nHAp) and doped with europium (III) ions—10 wt % 3 mol % Eu3+: nHAp@PLLA was tested using human osteosarcoma cells: U-2 OS, Saos-2 and MG-63. Human adipose tissue-derived stromal cells (HuASCs) were used as non-transformed cells to determine the selective cytotoxicity of the carrier. Analysis included evaluation of cells morphology (confocal/scanning electron microscopy (SEM)), metabolic activity and apoptosis profile in cultures on the scaffolds. Results obtained indicated on high cytotoxicity of scaffolds toward all OSA cell lines, associated with a decrease of cells’ viability, deterioration of metabolic activity and activation of apoptotic factors determined at mRNA and miRNA levels. Simultaneously, the biomaterials did not affect HuASCs’ viability and proliferation rate. Obtained scaffolds showed a bioimaging function, due to functionalization with luminescent europium ions, and thus may find application in theranostics treatment of OSA.


2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Natalia Díaz-Garrido ◽  
Carla P. Lozano ◽  
Jens Kreth ◽  
Rodrigo A. Giacaman

ABSTRACT Imbalances within the dental biofilm trigger dental caries, currently considered a dysbiosis and the most prevalent noncommunicable disease. There is still a gap in knowledge about the dynamics of enamel colonization by bacteria from the dental biofilm in caries. The aim, therefore, was to test whether the sequence of enamel colonization by a typically commensal and a cariogenic species modifies biofilm’s cariogenicity. Dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis on saliva-coated enamel slabs were inoculated in different sequences: S. mutans followed by S. sanguinis (Sm-Ss), S. sanguinis followed by S. mutans (Ss-Sm), S. mutans and S. sanguinis inoculated at the same time (Sm=Ss), and the single-species controls S. mutans followed by S. mutans (Sm-Sm) and S. sanguinis followed by S. sanguinis (Ss-Ss). Biofilms were exposed to 10% sucrose 3 times per day for 5 days, and the slabs/biofilms were retrieved to assess demineralization, viable cells, biomass, proteins, polysaccharides, and H2O2 production. Compared with Sm-Sm, primary inoculation with S. sanguinis reduced demineralization (P < 0.05). Both Ss-Sm and Sm=Ss sequences showed reduction in biomass, protein, and polysaccharide content (P < 0.05). The highest S. sanguinis viable count and H2O2 production level and the lowest acidogenicity were observed when S. sanguinis colonized enamel before S. mutans (P < 0.05). Initial enamel adherence with commensal biofilms seems to induce more intense competition against more typically cariogenic species, reducing cariogenicity. IMPORTANCE The concept of caries as an ecological disease implies the understanding of the intricate relationships among the populating microorganisms. Under frequent sugar exposure, some bacteria from the dental biofilm develop pathogenic traits that lead to imbalances (dysbiosis). Depending on which microorganism colonizes the dental surface first, different competition strategies may be developed. Studying the interactions in the entire dental biofilm is not an easy task. In this study, therefore, we modeled the interplay among these microorganisms using a caries-inducing species (S. mutans) and a health-associated species (S. sanguinis). Initial enamel adherence with S. sanguinis seems to induce more intense competition against typically caries-inducing species. Besides continuous exposure with sugars, early colonization of the enamel by highly cariogenic species like S. mutans appears to be needed to develop caries lesions as well. Promoting early colonization by health-associated bacteria such as S. sanguinis could help to maintain oral health, delaying dysbiosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jorge Jesús Veloz ◽  
Marysol Alvear ◽  
Luis A. Salazar

Several biological activities have been reported for the Chilean propolis, among their antimicrobial and antibiofilm properties, due to its high polyphenol content. In this study, we evaluate alternative methods to assess the effect of Chilean propolis on biofilm formation and metabolic activity of Streptococcus mutans (S. mutans), a major cariogenic agent in oral cavity. Biofilm formation was studied by using crystal violet and by confocal microscopy. The metabolic activity of biofilm was evaluated by MTT and by flow cytometry analysis. The results show that propolis reduces biofilm formation and biofilm metabolic activity in S. mutans. When the variability of the methods to measure biofilm formation was compared, the coefficient of variation (CV) fluctuated between 12.8 and 23.1% when using crystal violet methodology. On the other hand, the CV ranged between 2.2 and 3.3% with confocal microscopy analysis. The CV for biofilm’s metabolic activity measured by MTT methodology ranged between 5.0 and 11.6%, in comparison with 1.9 to 3.2% when flow cytometry analysis was used. Besides, it is possible to conclude that the methods based on colored compounds presented lower precision to study the effect of propolis on biofilm properties. Therefore, we recommend the use of flow cytometry and confocal microscopy in S. mutans biofilm analysis.


2008 ◽  
Vol 190 (13) ◽  
pp. 4632-4640 ◽  
Author(s):  
Jens Kreth ◽  
Yongshu Zhang ◽  
Mark C. Herzberg

ABSTRACT Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant interspecies antagonism, we studied three well-characterized and closely related oral species, Streptococcus gordonii, Streptococcus sanguinis, and cariogenic Streptococcus mutans. S. sanguinis and S. gordonii used oxygen availability and the differential production of hydrogen peroxide (H2O2) to compete effectively against S. mutans. Interspecies antagonism was influenced by glucose with reduced production of H2O2. Furthermore, aerobic conditions stimulated the competence system and the expression of the bacteriocin mutacin IV of S. mutans, as well as the H2O2-dependent release of heterologous DNA from mixed cultures of S. sanguinis and S. gordonii. These data provide new insights into ecological factors that determine the outcome of competition between pioneer colonizing oral streptococci and the survival mechanisms of S. mutans in the oral biofilm.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050022
Author(s):  
Xiaoyue Liang ◽  
Zhaohui Zou ◽  
Zheng Zou ◽  
Changyi Li ◽  
Xiaoxi Dong ◽  
...  

The main objective of this study is to evaluate the antibacterial effect of antibacterial photodynamic therapy (aPDT) on Streptococcus mutans (S. mutans) biofilm model in vitro. The selection of photosensitizers is the key step for the efficacy of photodynamic therapy (PDT). However, no studies have been conducted in the oral field to compare the functional characteristics and application effects of PDT mediated by various photosensitizers. In this research, the antibacterial effect of Methylene blue (MB)/650[Formula: see text]nm laser and Hematoporphyrin monomethyl ether (HMME)/532[Formula: see text]nm laser on S. mutans biofilm was compared under different energy densities to provide experimental reference for the clinical application of the two PDT. The yield of lactic acid was analyzed by Colony forming unit (CFU) and spectrophotometry, and the complete biofilm activity was measured by Confocal Laser Scanning Microscopy (CLSM) to evaluate the bactericidal effect on each group. Based on the results of CFU, the bacterial colonies formed by 30.4[Formula: see text]J/cm2 532[Formula: see text]nm MB-aPDT group and 30.4[Formula: see text]J/cm2 532[Formula: see text]nm HMME-aPDT group were significantly less than those in other groups, and the bacterial colonies in HMME-aPDT group were less than those in HMME-aPDT group. Lactic acid production in all treatment groups except the photosensitizer group was statistically lower than that in the normal saline control group. The activity of bacterial plaque biofilm was significantly decreased in the two groups treated with 30.4[Formula: see text]J/cm2 aPDT. Therefore, aPDT suitable for energy measurement can kill S. mutans plaque biofilm, and MB-aPDT is better than HMME-aPDT.


Sign in / Sign up

Export Citation Format

Share Document