scholarly journals Pharmacological Agents Targeting the Cellular Prion Protein

Pathogens ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 27 ◽  
Author(s):  
Maria Barreca ◽  
Nunzio Iraci ◽  
Silvia Biggi ◽  
Violetta Cecchetti ◽  
Emiliano Biasini

Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Giovanni Spagnolli ◽  
Tania Massignan ◽  
Andrea Astolfi ◽  
Silvia Biggi ◽  
Marta Rigoli ◽  
...  

AbstractRecent computational advancements in the simulation of biochemical processes allow investigating the mechanisms involved in protein regulation with realistic physics-based models, at an atomistic level of resolution. These techniques allowed us to design a drug discovery approach, named Pharmacological Protein Inactivation by Folding Intermediate Targeting (PPI-FIT), based on the rationale of negatively regulating protein levels by targeting folding intermediates. Here, PPI-FIT was tested for the first time on the cellular prion protein (PrP), a cell surface glycoprotein playing a key role in fatal and transmissible neurodegenerative pathologies known as prion diseases. We predicted the all-atom structure of an intermediate appearing along the folding pathway of PrP and identified four different small molecule ligands for this conformer, all capable of selectively lowering the load of the protein by promoting its degradation. Our data support the notion that the level of target proteins could be modulated by acting on their folding pathways, implying a previously unappreciated role for folding intermediates in the biological regulation of protein expression.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


2021 ◽  
Vol 134 (17) ◽  
Author(s):  
Caihong Zhu ◽  
Adriano Aguzzi

ABSTRACT Prion diseases are neurodegenerative disorders caused by conformational conversion of the cellular prion protein (PrPC) into scrapie prion protein (PrPSc). As the main component of prion, PrPSc acts as an infectious template that recruits and converts normal cellular PrPC into its pathogenic, misfolded isoform. Intriguingly, the phenomenon of prionoid, or prion-like, spread has also been observed in many other disease-associated proteins, such as amyloid β (Aβ), tau and α-synuclein. This Cell Science at a Glance and the accompanying poster highlight recently described physiological roles of prion protein and the advanced understanding of pathogenesis of prion disease they have afforded. Importantly, prion protein may also be involved in the pathogenesis of other neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therapeutic studies of prion disease have also exploited novel strategies to combat these devastating diseases. Future studies on prion protein and prion disease will deepen our understanding of the pathogenesis of a broad spectrum of neurodegenerative conditions.


2018 ◽  
Vol 293 (21) ◽  
pp. 8020-8031 ◽  
Author(s):  
Anna D. Engelke ◽  
Anika Gonsberg ◽  
Simrika Thapa ◽  
Sebastian Jung ◽  
Sarah Ulbrich ◽  
...  

A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrPC) into the scrapie isoform, denoted PrPSc. Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrPC and PrPSc; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrPC is converted in scrapie-infected cells, suggesting that not all PrPC species are suitable substrates for the conversion. On the basis of the observation that PrPC can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrPC, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrPC. Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrPC dimerization completely blocked its conversion into PrPSc in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrPC dimers had a dominant-negative inhibition effect on the conversion of monomeric PrPC. Our findings suggest that PrPC monomers are the major substrates for PrPSc propagation and that it may be possible to halt prion formation by stabilizing PrPC dimers.


2019 ◽  
Vol 19 (11) ◽  
pp. 1007-1018 ◽  
Author(s):  
Katrin Thüne ◽  
Matthias Schmitz ◽  
Anna Villar-Piqué ◽  
Hermann Clemens Altmeppen ◽  
Markus Schlomm ◽  
...  

2007 ◽  
Vol 81 (19) ◽  
pp. 10340-10351 ◽  
Author(s):  
Lisa Kercher ◽  
Cynthia Favara ◽  
James F. Striebel ◽  
Rachel LaCasse ◽  
Bruce Chesebro

ABSTRACT Activated microglia and astroglia are known to be involved in a variety of neurodegenerative diseases, including prion diseases. In the present experiments, we studied activation of astroglia and microglia after intraocular scrapie infection in transgenic mice expressing prion protein (PrP) in multiple cell types (tg7 mice) or in neurons only (tgNSE mice). In this model, scrapie infection and protease-resistant PrP deposition occurs in the retinas of both strains of mice, but retinal degeneration is observed only in tg7 mice. Our results showed that the retinas of tg7 and tgNSE mice both had astroglial activation with increased chemokine expression during the course of infection. However, only tg7 retinas exhibited strong microglial activation compared to tgNSE retinas, which showed little microglial activation by biochemical or morphological criteria. Therefore, microglial PrP expression might be required for scrapie-induced retinal microglial activation and damage. Furthermore, microglial activation preceded retinal neurodegeneration in tg7 mice, suggesting that activated microglia might contribute to the degenerative process, rather than being a response to the damage. Surprisingly, brain differed from retina in that an altered profile of microglial activation markers was upregulated, and the profiles in the two mouse strains were indistinguishable. Microglial activation in the brain was associated with severe brain vacuolation and neurodegeneration, leading to death. Thus, retinal and brain microglia appeared to differ in their requirements for activation, suggesting that different activation pathways occur in the two tissues.


2019 ◽  
Vol 20 (20) ◽  
pp. 5107 ◽  
Author(s):  
Larisa Ryskalin ◽  
Carla L. Busceti ◽  
Francesca Biagioni ◽  
Fiona Limanaqi ◽  
Pietro Familiari ◽  
...  

The cellular prion protein (PrPc) is an evolutionarily conserved cell surface protein encoded by the PRNP gene. PrPc is ubiquitously expressed within nearly all mammalian cells, though most abundantly within the CNS. Besides being implicated in the pathogenesis and transmission of prion diseases, recent studies have demonstrated that PrPc contributes to tumorigenesis by regulating tumor growth, differentiation, and resistance to conventional therapies. In particular, PrPc over-expression has been related to the acquisition of a malignant phenotype of cancer stem cells (CSCs) in a variety of solid tumors, encompassing pancreatic ductal adenocarcinoma (PDAC), osteosarcoma, breast cancer, gastric cancer, and primary brain tumors, mostly glioblastoma multiforme (GBM). Thus, PrPc is emerging as a key in maintaining glioblastoma cancer stem cells’ (GSCs) phenotype, thereby strongly affecting GBM infiltration and relapse. In fact, PrPc contributes to GSCs niche’s maintenance by modulating GSCs’ stem cell-like properties while restraining them from differentiation. This is the first review that discusses the role of PrPc in GBM. The manuscript focuses on how PrPc may act on GSCs to modify their expression and translational profile while making the micro-environment surrounding the GSCs niche more favorable to GBM growth and infiltration.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2032-2032
Author(s):  
Hana Glierova ◽  
Martin Panigaj ◽  
Jana Semberova ◽  
Olga Janouskova ◽  
Eva Dvorakova ◽  
...  

Abstract Abstract 2032 Cellular prion protein (PrPc) plays a key role in pathogenesis of prion diseases, however, its physiologic function remains unclear. The involvement of PrPc in hematopoiesis was suggested by importance of its expression for self renewal and survival of long term repopulating hematopoietic stem cells. Prion diseases were shown to deregulate transcription of several erythroid genes and we have demonstrated reduction of erythroid cell and erythropoietin production in FVB PrP-/- (Zurich I) mice in response to acute anemia (Zivny J. et al. Blood Cells Mol Dis. 2008;40:302-307). In this study, we exploited different mouse models with manipulated level of PrPc expression to verify the role of PrPc in erythropoiesis. First set of experiments was carried out on PrP-/- (Zurich I) and Tga20 PrP over-expressing mice on a mixed C57Bl6/129Sv genetic background. Inbred C57Bl6 mice served as a wild type control (WT). Induction of acute anemia by phenylhydrazine (PHZ) in PrP-/- and WT mice (n=18) led to drop in the hematocrit (HCT) from 52.5±1.5 and 49.8±2.5% to 37.9± 1.0 and 41.9±3.0% after 24 h, respectively. The course of anemia was significantly deeper in PrP-/- mice at 72 h, 96 h and 120 h (p < 0.01) after PHZ administration. Plasma levels of erythropoietin (Epo) in response to anemia reached higher maximum levels in PrP-/- than WT mice (2250 vs. 1810 pg/mL) although rose more slowly. The level of Epo mRNA in kidneys increased approximately 30-fold in both, WT and PrP-/- mice, however, in WT mice peaked at 24 h whereas in KO mice at 96 h. We repeated the study with smaller groups of PrP-/- and Tga20 mice (n=9) and analysed samples 24 h and 96 h post anemia induction. Random PrP gene re-introduction in Tga20 mice rescued the animals from severe anemia. Decrease in HCT after PHZ administration was significantly lower in Tga20 comparing to PrP-/- mice and was accompanied by less elevated reticulocyte (RTC) count, plasma Epo level and level of Epo mRNA in kidneys. Next we studied the dynamics of unchallenged erythropoiesis in PrP-/-, Tga20 and WT mice by in vivo labelling of blood cells with NHS-biotin and subsequent flow cytometric analysis of relative numbers of newly produced non-labelled RBC. WT mice had significantly enhanced turnover of RBC with higher counts of non-labelled RBC comparing to PrP-/- during 46 days of chase (p < 0.05). Half- life of labeled RBC in WT mice was 20 days, but 32 and 30 days in PrP-/- and Tga20 mice, respectively. Tga20 mice displayed tendency to increased RBC turnover over PrP-/- mice, but the difference was significant only 2 and 33 days after initiation of the experiment. Having in mind possible limitations of experiments conducted in genetically modified inbred mice we have designed second set of experiments in more stringent animal models. We mated C57Bl6/129Sv PrP-/- mice with inbred C57Bl6 and outbred CD-1 mice. Heterozygotes in F1 generation were mated and their PrP -/-, PrP -/+ and PrP +/+ offspring used in the experiments. Anemia was induced by PHZ and blood was sampled from tail vein at defined time points and HCT and RTC count were analysed. In C57Bl6 crossbreeds we observed significantly higher starting HCT level in PrP-/- mice (p < 0.05) compared to PrP-/+ and PrP+/+ mice reaching 53.2±2.3, 50.0±2.1 and 49±2.9%, respectively. Similar decrease in HCT was observed for all PrP groups 24 h after PHZ administration, however, significant differences between PrP-/- and PrP+/+ mice were recorded at 48 h and 72 h. The recovery to normal HCT was again retarded in PrP-/- mice. RTC counts rose more rapidly in PrP+/+ mice after PHZ administration and declined to basal levels faster than in PrP-/- mice, the difference reached significance at 24 h, 48 h and 96 h. Dynamics of unchallenged erythropoiesis in C57Bl6 crossbreeds was similar in all three PrP genotypes with no significant differences in numbers of newly produced RBC during 57 days of the experiment. In CD-1 crossbreed mice no significant differences in HCT and RTC counts were detected after PHZ induced anemia among PrP-/-, PrP-/+ and PrP+/+ siblings. Also the dynamics of unchallenged erythropoiesis was similar in all PrP genotypes. To sum up, our data confirmed the role of PrPc in stress erythropoiesis in studied inbred mouse models. In outbred model the effect of PrP deletion on erythropoiesis seems to be compensated. (GACR310/08/0878, GAUK86408) Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document