scholarly journals Escherichia coli Strains with Virulent Factors Typical for Uropathogens were Isolated from Sinuses from Patients with Chronic Rhinosinusitis—Case Report

Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 318
Author(s):  
Beata Krawczyk ◽  
Michał Michalik ◽  
Magdalena Fordon ◽  
Magdalena Wysocka ◽  
Alfred Samet ◽  
...  

Escherichia coli were isolated from three patients with chronic rhinosinusitis (CRS) by intraoperative sinus tissue biopsy. Taking into account the unusual replicative niche and previous treatment failures, it was decided to focus on the virulence and drug resistance of these bacteria. The strains turned out to be multi-sensitive, but the rich virulence factors profile of bacteria typical for phylogenetic group B2 deserved attention. Tests were carried out for the presence of 32 genes using the PCR method. Particularly noteworthy are the toxins Cnf-1, HlyA, Usp—an extensive iron uptake system (enterobactin, salmochelin, yersiniabactin and outer membrane hemin receptor ChuA)—SPATE autotransporters such as vat and pic, Ag43 autoaggregative protein—important for biofilm formation—and TosA/B which enhance the fitness of E.coli. All these virulence factors are identified predominantly in UPEC strains and provide a fitness advantage during colonization of the sinuses. Patients with CRS should be asked for past or present UTI. The specific virulence factors of E. coli that facilitate the colonization of the GI tract and urinary tract may also favor the colonization of a new ecological niche (sinuses) as a result of microbial imbalance or dysbiosis.

2001 ◽  
Vol 8 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Ulla Niewerth ◽  
Andreas Frey ◽  
Thomas Voss ◽  
Chantal Le Bouguénec ◽  
Georg Baljer ◽  
...  

ABSTRACT Pathogenic Escherichia coli strains are known to cause edema disease (ED) and postweaning diarrhea (PWD) in piglets. Although the exact mechanisms of pathogenicity that lead to ED-PWD remain to be elucidated, E. coli-borne Shiga-like toxin and adhesion-mediating virulence factors such as F18 adhesin or F4 fimbriae are believed to play a central role in ED-PWD. In light of these observations we investigated whether another E. coliadhesin, the plasmid-encoded AIDA (adhesin involved in diffuse adherence) might also be present in ED-PWD-causing E. coli isolates. For rapid screening for the AIDA system in large numbers of isolates, a multiplex PCR method along with a duplex Western blot procedure was developed. When screening 104 strains obtained from pigs with or without ED-PWD, we observed a high prevalence of the AIDA operon in porcine E. coli isolates, with over 25% of all strains being AIDA positive, and we could demonstrate a significant association of the intact AIDA gene (orfB) with ED-PWD, while defects in orfB were associated with the absence of disease. Although our data hint toward a contribution of AIDA to ED-PWD, further studies will be necessary since the presence of the AIDA genes was also associated with the presence of the Shiga-like toxin and F18 adhesin genes, two reported virulence factors for ED-PWD.


2013 ◽  
Vol 81 (4) ◽  
pp. 1164-1171 ◽  
Author(s):  
Erik J. Boll ◽  
Carsten Struve ◽  
Nadia Boisen ◽  
Bente Olesen ◽  
Steen G. Stahlhut ◽  
...  

ABSTRACTA multiresistant clonalEscherichia coliO78:H10 strain qualifying molecularly as enteroaggregativeEscherichia coli(EAEC) was recently shown to be the cause of a community-acquired outbreak of urinary tract infection (UTI) in greater Copenhagen, Denmark, in 1991. This marks the first time EAEC has been associated with an extraintestinal disease outbreak. Importantly, the outbreak isolates were recovered from the urine of patients with symptomatic UTI, strongly implying urovirulence. Here, we sought to determine the uropathogenic properties of the Copenhagen outbreak strain and whether these properties are conferred by the EAEC-specific virulence factors. We demonstrated that through expression of aggregative adherence fimbriae, the principal adhesins of EAEC, the outbreak strain exhibited pronouncedly increased adherence to human bladder epithelial cells compared to prototype uropathogenic strains. Moreover, the strain was able to produce distinct biofilms on abiotic surfaces, including urethral catheters. These findings suggest that EAEC-specific virulence factors increase uropathogenicity and may have played a significant role in the ability of the strain to cause a community-acquired outbreak of UTI. Thus, inclusion of EAEC-specific virulence factors is warranted in future detection and characterization of uropathogenicE. coli.


2020 ◽  
Vol 68 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eloisa Sevilla ◽  
Raúl C. Mainar-Jaime ◽  
Bernardino Moreno ◽  
Inmaculada Martín-Burriel ◽  
Mariano Morales ◽  
...  

AbstractThe aim of this study was to estimate the prevalence of antimicrobial resistance (AMR) in Escherichia coli from a dog population in Spain and assess specific virulence factors. Susceptibility to 22 antimicrobials was tested along with the production of extended-spectrum β-lactamases (ESBLs) and AmpC in faecal isolates from 100 dogs. Virulence-related genes associated with attaching and effacing E. coli (eae, Stx1, Stx2) and extraintestinal pathogenic E. coli – ExPEC – (papC, hlyA and cnf1) were detected by PCR. At least one kind of AMR was observed in 73% of the isolates. The highest prevalences corresponded to penicillin (45%), aminoglycoside (40%) and non-extended spectrum cephalosporin (39%) classes. Multidrug resistance (MDR) was observed in 53.4% of the resistant isolates. No resistance to colistin was found. Production of ESBL/AmpC enzymes was detected in 5% of E. coli. Shiga toxin-producing E. coli were not observed, enteropathogenic E. coli were identified in only 12% of them, and ExPEC were found in 25%. Dog faeces can be a source of E. coli strains potentially presenting a threat to humans through their virulence factors or AMR. The non-hygienic keeping of animals may increase the risk of colonisation of such pathogens in humans.


2008 ◽  
Vol 190 (12) ◽  
pp. 4147-4161 ◽  
Author(s):  
Jaione Valle ◽  
Amanda N. Mabbett ◽  
Glen C. Ulett ◽  
Alejandro Toledo-Arana ◽  
Karine Wecker ◽  
...  

ABSTRACT The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.


2011 ◽  
Vol 23 (6) ◽  
pp. 1146-1152 ◽  
Author(s):  
José Benedito C. Fernandes ◽  
Larissa G. Zanardo ◽  
Newton N. Galvão ◽  
Isabel A. Carvalho ◽  
Luis Augusto Nero ◽  
...  

In the current study, the virulence factors in Escherichia coli isolates from bovine mastitis were investigated, and the connection between these factors and infection was evaluated using phenotypic and genotypic analyses. Twenty-seven E. coli isolates were analyzed, and 2 were shown to produce verotoxin. All isolates had the ability to produce biofilms, although at different levels. One isolate was found to be sensitive to the bactericidal activity of bovine serum, 11 were intermediate, and 15 were resistant. Some isolates showed resistance to trimethoprim sulfa (9) and ampicillin (4), intermediate resistance to neomycin (1) and trimethoprim sulfa (5), and simultaneous resistance to ampicillin and trimethoprim sulfa (4). The fimH gene was found in all isolates and was associated with other virulence markers: pap (1), stb (8), cs31a (3), stb and vt2 (2), cs31a and stb (3), east1 and kps (1), stb and east1 (1), cs31a and east1 (1), and cs31a, stb, pap, and iucD (1). Serogroups were determined for 3 isolates: O93:H4, O83:H19, and O15:H11. Phylogenetic analysis showed that 23 isolates belonged to group A and 4 belonged to B1. The findings revealed that these E. coli isolates are opportunistic pathogens with different virulence factors. The results indicate that the pathogenicity route of E. coli in bovine mastitis is not a consequence of 1 specific virulence factor.


2006 ◽  
Vol 74 (7) ◽  
pp. 4142-4148 ◽  
Author(s):  
Rebecca A. Rashid ◽  
Tami A. Tabata ◽  
Melissa J. Oatley ◽  
Thomas E. Besser ◽  
Phillip I. Tarr ◽  
...  

ABSTRACT Escherichia coli O157:H7 is a commensal organism in cattle, but it is a pathogen in humans. This differential expression of virulence suggests that specific virulence factors are regulated differently in human and bovine hosts. To test this hypothesis, relative real-time reverse transcription-PCR was used to relate the expression of several putative virulence genes (eae, espA, stx 2, rfbE, ehxA, and iha) to that of the “housekeeping” gene gnd during natural human and experimental bovine infection with E. coli O157:H7. We examined these genes in fecal samples from eight humans and four calves. iha and espA were significantly more expressed in bovine infections. rfbE and ehxA appeared to be more highly expressed in human infections, though these differences did not achieve statistical significance. Our results support the hypothesis that some virulence-associated genes of O157:H7 are differentially expressed in a host-specific manner.


2012 ◽  
Vol 79 (1) ◽  
pp. 411-414 ◽  
Author(s):  
Afonso G. Abreu ◽  
Vanessa Bueris ◽  
Tatiane M. Porangaba ◽  
Marcelo P. Sircili ◽  
Fernando Navarro-Garcia ◽  
...  

ABSTRACTAutotransporter (AT) protein-encoding genes of diarrheagenicEscherichia coli(DEC) pathotypes (cah,eatA,ehaABCDJ,espC,espI,espP,pet,pic,sat, andtibA) were detected in typical and atypical enteropathogenicE. coli(EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


2021 ◽  
Author(s):  
Arwen E Frick-Cheng ◽  
Anna Sintsova ◽  
Sara N Smith ◽  
Ali Pirani ◽  
Evan S Snitkin ◽  
...  

More than half of women will experience a urinary tract infection (UTI) with uropathogenic Escherichia coli (UPEC) causing ~80% of uncomplicated cases. Iron acquisition systems are essential for uropathogenesis, and UPEC encode functionally redundant iron acquisition systems, underlining their importance. However, a recent UPEC clinical isolate, HM7 lacks this functional redundancy and instead encodes a sole siderophore, enterobactin. To determine if E. coli HM7 possesses unidentified iron acquisition systems, we performed RNA-sequencing under iron-limiting conditions and demonstrated that the ferric citrate uptake system (fecABCDE and fecIR) was highly upregulated. Importantly, there are high levels of citrate within urine, some of which is bound to iron, and the fec system is highly enriched in UPEC isolates compared to environmental or fecal strains. Therefore, we hypothesized that HM7 and other similar strains use the fec system to acquire iron in the host. Deletion of both enterobactin biosynthesis and ferric citrate uptake (ΔentB/ΔfecA) abrogates use of ferric citrate as an iron source and fecA provides an advantage in human urine in absence of enterobactin. However, in a UTI mouse model, fecA is a fitness factor independent of enterobactin production, likely due to the action of host Lipocalin-2 chelating ferrienterobactin. These findings indicate that ferric citrate uptake is used as an iron source when siderophore efficacy is limited, such as in the host during UTI. Defining these novel compensatory mechanisms and understanding the nutritional hierarchy of preferred iron sources within the urinary tract are important in the search for new approaches to combat UTI.


2007 ◽  
Vol 56 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Andrej Weintraub

Enteroaggregative Escherichia coli (EAEC) is a subgroup of diarrhoeagenic E. coli (DEC) that during the past decade has received increasing attention as a cause of watery diarrhoea, which is often persistent. EAEC have been isolated from children and adults worldwide. As well as sporadic cases, outbreaks of EAEC-caused diarrhoea have been described. The definition of EAEC is the ability of the micro-organism to adhere to epithelial cells such as HEp-2 in a very characteristic ‘stacked-brick’ pattern. Although many studies searching for specific virulence factor(s) unique for this category of DEC have been published it is still unknown why the EAEC cause persistent diarrhoea. In addition, the aggregative property of EAEC causes a lot of problems in serotyping due to the cells auto-agglutinating. The gold standard for identification of EAEC includes isolation of the agent and an adherence assay using tissue culture, viz. HEp-2 cells. This assay is in most cases reliable; however, emergence of ‘atypical’ EAEC has been described in several publications. In addition, the HEp-2 assay is time consuming, demands a tissue culture lab and trained staff. Several molecular biological assays have been described, however, none show 100 % specificity.


Sign in / Sign up

Export Citation Format

Share Document