scholarly journals Blood Parasites in Endangered Wildlife-Trypanosomes Discovered during a Survey of Haemoprotozoa from the Tasmanian Devil

Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 873
Author(s):  
Siobhon L. Egan ◽  
Manuel Ruiz-Aravena ◽  
Jill M. Austen ◽  
Xavier Barton ◽  
Sebastien Comte ◽  
...  

The impact of emerging infectious diseases is increasingly recognised as a major threat to wildlife. Wild populations of the endangered Tasmanian devil, Sarcophilus harrisii, are experiencing devastating losses from a novel transmissible cancer, devil facial tumour disease (DFTD); however, despite the rapid decline of this species, there is currently no information on the presence of haemoprotozoan parasites. In the present study, 95 Tasmanian devil blood samples were collected from four populations in Tasmania, Australia, which underwent molecular screening to detect four major groups of haemoprotozoa: (i) trypanosomes, (ii) piroplasms, (iii) Hepatozoon, and (iv) haemosporidia. Sequence results revealed Trypanosoma infections in 32/95 individuals. Trypanosoma copemani was identified in 10 Tasmanian devils from three sites and a second Trypanosoma sp. was identified in 22 individuals that were grouped within the poorly described T. cyclops clade. A single blood sample was positive for Babesia sp., which most closely matched Babesia lohae. No other blood protozoan parasite DNA was detected. This study provides the first insight into haemoprotozoa from the Tasmanian devil and the first identification of Trypanosoma and Babesia in this carnivorous marsupial.

2015 ◽  
Vol 282 (1814) ◽  
pp. 20151468 ◽  
Author(s):  
Rodrigo K. Hamede ◽  
Anne-Maree Pearse ◽  
Kate Swift ◽  
Leon A. Barmuta ◽  
Elizabeth P. Murchison ◽  
...  

Tasmanian devil facial tumour disease (DFTD) is a clonally transmissible cancer threatening the Tasmanian devil ( Sarcophilus harrisii ) with extinction. Live cancer cells are the infectious agent, transmitted to new hosts when individuals bite each other. Over the 18 years since DFTD was first observed, distinct genetic and karyotypic sublineages have evolved. In this longitudinal study, we investigate the associations between tumour karyotype, epidemic patterns and host demographic response to the disease. Reduced host population effects and low DFTD infection rates were associated with high prevalence of tetraploid tumours. Subsequent replacement by a diploid variant of DFTD coincided with a rapid increase in disease prevalence, population decline and reduced mean age of the population. Our results suggest a role for tumour genetics in DFTD transmission dynamics and epidemic outcome. Future research, for this and other highly pathogenic emerging infectious diseases, should focus on understanding the evolution of host and pathogen genotypes, their effects on susceptibility and tolerance to infection, and their implications for designing novel genetic management strategies. This study provides evidence for a rapid localized lineage replacement occurring within a transmissible cancer epidemic and highlights the possibility that distinct DFTD genetic lineages may harbour traits that influence pathogen fitness.


2012 ◽  
Vol 24 (7) ◽  
pp. 999 ◽  
Author(s):  
T. Keeley ◽  
P. D. McGreevy ◽  
J. K. O'Brien

Devil facial tumour disease (DFTD) is the cause of the rapid decline of wild Tasmanian devils. Female devils are seasonal breeders with births peaking during autumn (i.e. March) but the degree of reproductive seasonality in male devils is unknown. The objective of this study was to examine the potential effects of season and DFTD on reproductive function in male devils (n = 55). Testicular (1.90 ± 0.23 g) and epididymal (0.90 ± 0.06 g) weights were maximal during autumn and spring (P < 0.05), whereas prostate (3.71 ± 0.74 g) and Cowper’s gland (0.68 ± 0.22; 0.52 ± 0.21 g) weights peaked during autumn (P < 0.001). The motility of spermatozoa from the cauda epididymides extracted post-mortem was similar (P > 0.05) across season and disease state (31.5 ± 13.1% total motility). Testicular and epididymal weights were no different between animals displaying late or early-stage DTFD signs or disease-free animals (P > 0.1). The accessory sex glands were larger in late-stage DFTD animals than in animals with early-stage disease signs or which were disease-free (P < 0.01) but effects of season on this result can’t be excluded. Serum testosterone concentrations peaked during summer (0.25 ± 0.18 ng mL–1) but values were not different from the preceding and subsequent seasons (P > 0.05), nor influenced by disease stage (P > 0.1). Seasonal and DFTD-related changes in serum cortisol concentrations were not evident (P > 0.1). Male devil reproduction does not appear to be restricted by season nor inhibited by DFTD.


2014 ◽  
Vol 62 (4) ◽  
pp. 272 ◽  
Author(s):  
Bronwyn A. Fancourt ◽  
Robert B. Jackson

Toxoplasma gondii is a cosmopolitan protozoan parasite of felids that also has significant implications for the health of wildlife, livestock and humans worldwide. In Australia, feral, stray and domestic cats (Felis catus) are the most important definitive host of T. gondii as they are the only species that can excrete the environmentally resistant oocysts that provide a major source of infection for mammals and birds. In Tasmania, the rapid decline of the Tasmanian devil (Sarcophilus harrisii) may allow an increase in feral cat abundance, thereby increasing the risk of T. gondii infection to a range of susceptible wildlife species. At present, there is scant information on the prevalence of T. gondii infection in feral cat populations across Tasmania. We tested feral cats from 13 regions across Tasmania for the presence of T. gondii–specific IgG antibodies using a modified agglutination test. Results were combined with serosurveys from three previous studies to enable a comparison of seroprevalence among 14 regions across Tasmania. We found that 84.2% (224 of 266) of cats tested positive for T. gondii IgG antibodies. This is among the highest rates of prevalence recorded from Australia, and significantly higher than for most other countries. Adult cats had higher seroprevalence than kittens but there was no difference between sexes. In Tasmania, seroprevalence was high in 12 of 14 regions (range: 79.3–100.0%), with only two regions (Tasman Island and Southern Tasmania) recording significantly lower seroprevalence (≤50%). This suggests a high risk of infection across Tasmania, and has significant implications for wildlife conservation should feral cat abundance increase with the ongoing declines in Tasmanian devils.


2021 ◽  
Author(s):  
Camila Espejo ◽  
Richard Wilson ◽  
Ruth J. Pye ◽  
Julian C. Ratcliffe ◽  
Manuel Ruiz-Aravena ◽  
...  

AbstractThe identification of practical early diagnosis biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumour disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (Sarcophilus harrisii). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumour lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analysed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples. The antimicrobial peptide cathelicidin-3 (CATH3) was enriched in serum EVs of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1% specificity). As antimicrobial peptides can play a variety of roles in the cancer process, our results suggest that the specific elevation of serum EV-associated CATH3 may be mechanistically involved in DFTD pathogenesis. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperilled Tasmanian devil population.


Science ◽  
2020 ◽  
Vol 370 (6522) ◽  
pp. eabb9772
Author(s):  
Austin H. Patton ◽  
Matthew F. Lawrance ◽  
Mark J. Margres ◽  
Christopher P. Kozakiewicz ◽  
Rodrigo Hamede ◽  
...  

Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.


2018 ◽  
Vol 58 (6) ◽  
pp. 1043-1054 ◽  
Author(s):  
Gregory M Woods ◽  
Samantha Fox ◽  
Andrew S Flies ◽  
Cesar D Tovar ◽  
Menna Jones ◽  
...  

AbstractThe Tasmanian devil, a marsupial carnivore, has been restricted to the island state of Tasmania since its extinction on the Australian mainland about 3000 years ago. In the past two decades, this species has experienced severe population decline due to the emergence of devil facial tumor disease (DFTD), a transmissible cancer. During these 20 years, scientists have puzzled over the immunological and evolutionary responses by the Tasmanian devil to this transmissible cancer. Targeted strategies in population management and disease control have been developed as well as comparative processes to identify variation in tumor and host genetics. A multi-disciplinary approach with multi-institutional teams has produced considerable advances over the last decade. This has led to a greater understanding of the molecular pathogenesis and genomic classification of this cancer. New and promising developments in the Tasmanian devil’s story include evidence that most immunized, and some wild devils, can produce an immune response to DFTD. Furthermore, epidemiology combined with genomic studies suggest a rapid evolution to the disease and that DFTD will become an endemic disease. Since 1998 there have been more than 350 publications, distributed over 37 Web of Science categories. A unique endemic island species has become an international curiosity that is in the spotlight of integrative and comparative biology research.


2018 ◽  
Author(s):  
Rowena Chong ◽  
Mang Shi ◽  
Catherine E Grueber ◽  
Edward C Holmes ◽  
Carolyn Hogg ◽  
...  

AbstractBackgroundThe Tasmanian devil is an endangered carnivorous marsupial threatened by devil facial tumour disease (DFTD). While research on DFTD has been extensive, little is known about the viruses present in devils, and whether any of these are of potential conservation relevance for this endangered species.MethodsUsing both metagenomics based on virus-like particle (VLP) enrichment and sequence-independent amplification (VLP metagenomics), and meta-transcriptomics based on bulk RNA sequencing, we characterised and compared the faecal viromes of captive and wild Tasmanian devils.ResultsA total of 54 devil faecal samples collected from captive (n = 2) and wild (n = 4) populations were processed for virome characterisation using both approaches. We detected many novel, highly divergent viruses, including vertebrate viruses, bacteriophage and other dietary associated plant and insect viruses. In total, 18 new vertebrate viruses, including novel sapelovirus, astroviruses, bocaviruses, papillomaviruses and gammaherpesvirus were identified, as well as known mammalian pathogens including rabbit haemorrhagic disease virus 2 (RHDV2). Captive devils showed significantly lower levels of viral diversity than wild devils. Comparison of the two methodological approaches revealed substantial differences in the number and types of viruses detected, with meta-transcriptomics mainly identifying RNA viruses, and VLP metagenomics largely identifying DNA viruses.ConclusionThis study has greatly expanded our knowledge of eukaryotic viruses in the Tasmanian devil and provides important baseline information that will contribute to the conservation and captive management of this endangered species. In addition, our results showed that a combination of VLP metagenomics and meta-transcriptomics may be a more comprehensive approach to virome characterisation than either method alone.


2018 ◽  
Vol 285 (1891) ◽  
pp. 20182239 ◽  
Author(s):  
Manuel Ruiz-Aravena ◽  
Menna E. Jones ◽  
Scott Carver ◽  
Sergio Estay ◽  
Camila Espejo ◽  
...  

Knowledge of the ecological dynamics between hosts and pathogens during the initial stages of disease emergence is crucial to understanding the potential for evolution of new interspecific interactions. Tasmanian devil ( Sarcophilus harrisii ) populations have declined precipitously owing to infection by a transmissible cancer (devil facial tumour disease, DFTD) that emerged approximately 20 years ago. Since the emergence of DFTD, and as the disease spreads across Tasmania, the number of devils has dropped up to 90% across 80% of the species's distributional range. As a result, the disease is expected to act as a strong selective force on hosts to develop mechanisms of tolerance and/or resistance to the infection. We assessed the ability of infected devils to cope with infection, which translates into host tolerance to the cancer, by using the reaction norm of the individual body condition by tumour burden. We found that body condition of infected hosts is negatively affected by cancer progression. Males and females presented significant differences in their tolerance levels to infection, with males suffering declines of up to 25% of their body condition, in contrast to less than 5% in females. Sex-related differences in tolerance to cancer progression may select for changes in life-history strategies of the host and could also alter the selective environment for the tumours.


2019 ◽  
Vol 31 (7) ◽  
pp. 1296 ◽  
Author(s):  
C. E. Grueber ◽  
E. Peel ◽  
B. Wright ◽  
C. J. Hogg ◽  
K. Belov

Tasmanian devils are threatened in the wild by devil facial tumour disease: a transmissible cancer with a high fatality rate. In response, the Save the Tasmanian Devil Program (STDP) established an ‘insurance population’ to enable the preservation of genetic diversity and natural behaviours of devils. This breeding program includes a range of institutions and facilities, from zoo-based intensive enclosures to larger, more natural environments, and a strategic approach has been required to capture and maintain genetic diversity, natural behaviours and to ensure reproductive success. Laboratory-based research, particularly genetics, in tandem with adaptive management has helped the STDP reach its goals, and has directly contributed to the conservation of the species in the wild. Here we review this work and show that the Tasmanian devil breeding program is a powerful example of how genetic research can be used to understand and improve reproductive success in a threatened species.


2018 ◽  
Vol 24 (3) ◽  
pp. 271
Author(s):  
Samantha Fox ◽  
Carolyn J. Hogg ◽  
Catherine E. Grueber ◽  
Katherine Belov

The Tasmanian devil, an iconic carnivorous marsupial, is at risk of extinction due to a contagious cancer called devil facial tumour disease. Saving any species from extinction requires strong partnerships between government agencies, zoo bodies and academia. The Devil Tools & Tech project brought these groups together under a single banner to achieve a common goal. The project has strong leadership from women. Here we tell our personal stories as to how we came to be involved in saving the devil and emphasise the importance of strong networks for women to reach their full potential.


Sign in / Sign up

Export Citation Format

Share Document