scholarly journals Transmissible cancer in Tasmanian devils: localized lineage replacement and host population response

2015 ◽  
Vol 282 (1814) ◽  
pp. 20151468 ◽  
Author(s):  
Rodrigo K. Hamede ◽  
Anne-Maree Pearse ◽  
Kate Swift ◽  
Leon A. Barmuta ◽  
Elizabeth P. Murchison ◽  
...  

Tasmanian devil facial tumour disease (DFTD) is a clonally transmissible cancer threatening the Tasmanian devil ( Sarcophilus harrisii ) with extinction. Live cancer cells are the infectious agent, transmitted to new hosts when individuals bite each other. Over the 18 years since DFTD was first observed, distinct genetic and karyotypic sublineages have evolved. In this longitudinal study, we investigate the associations between tumour karyotype, epidemic patterns and host demographic response to the disease. Reduced host population effects and low DFTD infection rates were associated with high prevalence of tetraploid tumours. Subsequent replacement by a diploid variant of DFTD coincided with a rapid increase in disease prevalence, population decline and reduced mean age of the population. Our results suggest a role for tumour genetics in DFTD transmission dynamics and epidemic outcome. Future research, for this and other highly pathogenic emerging infectious diseases, should focus on understanding the evolution of host and pathogen genotypes, their effects on susceptibility and tolerance to infection, and their implications for designing novel genetic management strategies. This study provides evidence for a rapid localized lineage replacement occurring within a transmissible cancer epidemic and highlights the possibility that distinct DFTD genetic lineages may harbour traits that influence pathogen fitness.

Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 873
Author(s):  
Siobhon L. Egan ◽  
Manuel Ruiz-Aravena ◽  
Jill M. Austen ◽  
Xavier Barton ◽  
Sebastien Comte ◽  
...  

The impact of emerging infectious diseases is increasingly recognised as a major threat to wildlife. Wild populations of the endangered Tasmanian devil, Sarcophilus harrisii, are experiencing devastating losses from a novel transmissible cancer, devil facial tumour disease (DFTD); however, despite the rapid decline of this species, there is currently no information on the presence of haemoprotozoan parasites. In the present study, 95 Tasmanian devil blood samples were collected from four populations in Tasmania, Australia, which underwent molecular screening to detect four major groups of haemoprotozoa: (i) trypanosomes, (ii) piroplasms, (iii) Hepatozoon, and (iv) haemosporidia. Sequence results revealed Trypanosoma infections in 32/95 individuals. Trypanosoma copemani was identified in 10 Tasmanian devils from three sites and a second Trypanosoma sp. was identified in 22 individuals that were grouped within the poorly described T. cyclops clade. A single blood sample was positive for Babesia sp., which most closely matched Babesia lohae. No other blood protozoan parasite DNA was detected. This study provides the first insight into haemoprotozoa from the Tasmanian devil and the first identification of Trypanosoma and Babesia in this carnivorous marsupial.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 63
Author(s):  
Gael L. Glassock ◽  
Catherine E. Grueber ◽  
Katherine Belov ◽  
Carolyn J. Hogg

Extinction risk is increasing for a range of species due to a variety of threats, including disease. Emerging infectious diseases can cause severe declines in wild animal populations, increasing population fragmentation and reducing gene flow. Small, isolated, host populations may lose adaptive potential and become more susceptible to extinction due to other threats. Management of the genetic consequences of disease-induced population decline is often necessary. Whilst disease threats need to be addressed, they can be difficult to mitigate. Actions implemented to conserve the Tasmanian devil (Sarcophilus harrisii), which has suffered decline to the deadly devil facial tumour disease (DFTD), exemplify how genetic management can be used to reduce extinction risk in populations threatened by disease. Supplementation is an emerging conservation technique that may benefit populations threatened by disease by enabling gene flow and conserving their adaptive potential through genetic restoration. Other candidate species may benefit from genetic management via supplementation but concerns regarding outbreeding depression may prevent widespread incorporation of this technique into wildlife disease management. However, existing knowledge can be used to identify populations that would benefit from supplementation where risk of outbreeding depression is low. For populations threatened by disease and, in situations where disease eradication is not an option, wildlife managers should consider genetic management to buffer the host species against inbreeding and loss of genetic diversity.


2021 ◽  
Author(s):  
Camila Espejo ◽  
Richard Wilson ◽  
Ruth J. Pye ◽  
Julian C. Ratcliffe ◽  
Manuel Ruiz-Aravena ◽  
...  

AbstractThe identification of practical early diagnosis biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumour disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (Sarcophilus harrisii). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumour lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analysed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples. The antimicrobial peptide cathelicidin-3 (CATH3) was enriched in serum EVs of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1% specificity). As antimicrobial peptides can play a variety of roles in the cancer process, our results suggest that the specific elevation of serum EV-associated CATH3 may be mechanistically involved in DFTD pathogenesis. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperilled Tasmanian devil population.


Science ◽  
2020 ◽  
Vol 370 (6522) ◽  
pp. eabb9772
Author(s):  
Austin H. Patton ◽  
Matthew F. Lawrance ◽  
Mark J. Margres ◽  
Christopher P. Kozakiewicz ◽  
Rodrigo Hamede ◽  
...  

Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.


2018 ◽  
Vol 58 (6) ◽  
pp. 1043-1054 ◽  
Author(s):  
Gregory M Woods ◽  
Samantha Fox ◽  
Andrew S Flies ◽  
Cesar D Tovar ◽  
Menna Jones ◽  
...  

AbstractThe Tasmanian devil, a marsupial carnivore, has been restricted to the island state of Tasmania since its extinction on the Australian mainland about 3000 years ago. In the past two decades, this species has experienced severe population decline due to the emergence of devil facial tumor disease (DFTD), a transmissible cancer. During these 20 years, scientists have puzzled over the immunological and evolutionary responses by the Tasmanian devil to this transmissible cancer. Targeted strategies in population management and disease control have been developed as well as comparative processes to identify variation in tumor and host genetics. A multi-disciplinary approach with multi-institutional teams has produced considerable advances over the last decade. This has led to a greater understanding of the molecular pathogenesis and genomic classification of this cancer. New and promising developments in the Tasmanian devil’s story include evidence that most immunized, and some wild devils, can produce an immune response to DFTD. Furthermore, epidemiology combined with genomic studies suggest a rapid evolution to the disease and that DFTD will become an endemic disease. Since 1998 there have been more than 350 publications, distributed over 37 Web of Science categories. A unique endemic island species has become an international curiosity that is in the spotlight of integrative and comparative biology research.


2001 ◽  
Vol 356 (1410) ◽  
pp. 901-910 ◽  
Author(s):  
Robert M. May ◽  
Sunetra Gupta ◽  
Angela R. McLean

Against the background of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) and other potentially emerging (or re–emerging) infectious diseases, this review will focus on the properties which enable an infectious agent to establish and maintain itself within a specified host population. We shall emphasize that for a pathogen to cross a species barrier is one thing, but for it successfully to maintain itself in the new population is must have a ‘basic reproductive number’, R 0 , which satisfies R 0 > 1. We shall further discuss how behavioural factors interweave with the basic biology of the production of transmission stages by the pathogen, all subject to possible secular changes, to determine the magnitude of R 0 . Although primarily focusing on HIV and AIDS, we shall review wider aspects of these questions.


2018 ◽  
Vol 285 (1891) ◽  
pp. 20182239 ◽  
Author(s):  
Manuel Ruiz-Aravena ◽  
Menna E. Jones ◽  
Scott Carver ◽  
Sergio Estay ◽  
Camila Espejo ◽  
...  

Knowledge of the ecological dynamics between hosts and pathogens during the initial stages of disease emergence is crucial to understanding the potential for evolution of new interspecific interactions. Tasmanian devil ( Sarcophilus harrisii ) populations have declined precipitously owing to infection by a transmissible cancer (devil facial tumour disease, DFTD) that emerged approximately 20 years ago. Since the emergence of DFTD, and as the disease spreads across Tasmania, the number of devils has dropped up to 90% across 80% of the species's distributional range. As a result, the disease is expected to act as a strong selective force on hosts to develop mechanisms of tolerance and/or resistance to the infection. We assessed the ability of infected devils to cope with infection, which translates into host tolerance to the cancer, by using the reaction norm of the individual body condition by tumour burden. We found that body condition of infected hosts is negatively affected by cancer progression. Males and females presented significant differences in their tolerance levels to infection, with males suffering declines of up to 25% of their body condition, in contrast to less than 5% in females. Sex-related differences in tolerance to cancer progression may select for changes in life-history strategies of the host and could also alter the selective environment for the tumours.


2019 ◽  
Vol 31 (7) ◽  
pp. 1296 ◽  
Author(s):  
C. E. Grueber ◽  
E. Peel ◽  
B. Wright ◽  
C. J. Hogg ◽  
K. Belov

Tasmanian devils are threatened in the wild by devil facial tumour disease: a transmissible cancer with a high fatality rate. In response, the Save the Tasmanian Devil Program (STDP) established an ‘insurance population’ to enable the preservation of genetic diversity and natural behaviours of devils. This breeding program includes a range of institutions and facilities, from zoo-based intensive enclosures to larger, more natural environments, and a strategic approach has been required to capture and maintain genetic diversity, natural behaviours and to ensure reproductive success. Laboratory-based research, particularly genetics, in tandem with adaptive management has helped the STDP reach its goals, and has directly contributed to the conservation of the species in the wild. Here we review this work and show that the Tasmanian devil breeding program is a powerful example of how genetic research can be used to understand and improve reproductive success in a threatened species.


2014 ◽  
Vol 10 (11) ◽  
pp. 20140619 ◽  
Author(s):  
Anna Brüniche-Olsen ◽  
Menna E. Jones ◽  
Jeremy J. Austin ◽  
Christopher P. Burridge ◽  
Barbara R. Holland

The Tasmanian devil ( Sarcophilus harrisii ) was widespread in Australia during the Late Pleistocene but is now endemic to the island of Tasmania. Low genetic diversity combined with the spread of devil facial tumour disease have raised concerns for the species’ long-term survival. Here, we investigate the origin of low genetic diversity by inferring the species' demographic history using temporal sampling with summary statistics, full-likelihood and approximate Bayesian computation methods. Our results show extensive population declines across Tasmania correlating with environmental changes around the last glacial maximum and following unstable climate related to increased ‘El Niño–Southern Oscillation’ activity.


Author(s):  
Amanda R. Stahlke ◽  
Brendan Epstein ◽  
Soraia Barbosa ◽  
Austin Patton ◽  
Sarah A. Hendricks ◽  
...  

AbstractTasmanian devils (Sarcophilus harrisii) are evolving in response to a unique transmissible cancer, devil facial tumour disease (DFTD), first described in 1996. Persistence of wild populations and the recent emergence of a second independently evolved transmissible cancer suggest that transmissible cancers may be a recurrent feature in devils. We used a targeted sequencing approach, RAD-capture, to identify genomic regions subject to rapid evolution in approximately 2,500 devils as DFTD spread across the species range. We found evidence for genome-wide contemporary evolution, including 186 candidate genes related to cell cycling and immune response. We then searched for signatures of recurrent selection with a molecular evolution approach and found widespread evidence of historical positive selection in devils relative to other marsupials. We identified both contemporary and historical selection in 19 genes and enrichment for contemporary and historical selection independently in 22 gene sets. Nonetheless, the overlap between candidates for historical selection and for contemporary response to DFTD was lower than expected, supporting novelty in the evolutionary response of devils to DFTD. Our results can inform management actions to conserve adaptive capacity of devils by identifying high priority targets for genetic monitoring and maintenance of functional diversity in managed populations.


Sign in / Sign up

Export Citation Format

Share Document