scholarly journals Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease

2018 ◽  
Vol 285 (1891) ◽  
pp. 20182239 ◽  
Author(s):  
Manuel Ruiz-Aravena ◽  
Menna E. Jones ◽  
Scott Carver ◽  
Sergio Estay ◽  
Camila Espejo ◽  
...  

Knowledge of the ecological dynamics between hosts and pathogens during the initial stages of disease emergence is crucial to understanding the potential for evolution of new interspecific interactions. Tasmanian devil ( Sarcophilus harrisii ) populations have declined precipitously owing to infection by a transmissible cancer (devil facial tumour disease, DFTD) that emerged approximately 20 years ago. Since the emergence of DFTD, and as the disease spreads across Tasmania, the number of devils has dropped up to 90% across 80% of the species's distributional range. As a result, the disease is expected to act as a strong selective force on hosts to develop mechanisms of tolerance and/or resistance to the infection. We assessed the ability of infected devils to cope with infection, which translates into host tolerance to the cancer, by using the reaction norm of the individual body condition by tumour burden. We found that body condition of infected hosts is negatively affected by cancer progression. Males and females presented significant differences in their tolerance levels to infection, with males suffering declines of up to 25% of their body condition, in contrast to less than 5% in females. Sex-related differences in tolerance to cancer progression may select for changes in life-history strategies of the host and could also alter the selective environment for the tumours.

2020 ◽  
Vol 287 (1940) ◽  
pp. 20202454
Author(s):  
David G. Hamilton ◽  
Menna E. Jones ◽  
Elissa Z. Cameron ◽  
Douglas H. Kerlin ◽  
Hamish McCallum ◽  
...  

Infectious diseases, including transmissible cancers, can have a broad range of impacts on host behaviour, particularly in the latter stages of disease progression. However, the difficulty of early diagnoses makes the study of behavioural influences of disease in wild animals a challenging task. Tasmanian devils ( Sarcophilus harrisii ) are affected by a transmissible cancer, devil facial tumour disease (DFTD), in which tumours are externally visible as they progress. Using telemetry and mark–recapture datasets, we quantify the impacts of cancer progression on the behaviour of wild devils by assessing how interaction patterns within the social network of a population change with increasing tumour load. The progression of DFTD negatively influences devils' likelihood of interaction within their network. Infected devils were more active within their network late in the mating season, a pattern with repercussions for DFTD transmission. Our study provides a rare opportunity to quantify and understand the behavioural feedbacks of disease in wildlife and how they may affect transmission and population dynamics in general.


2021 ◽  
Author(s):  
Camila Espejo ◽  
Richard Wilson ◽  
Ruth J. Pye ◽  
Julian C. Ratcliffe ◽  
Manuel Ruiz-Aravena ◽  
...  

AbstractThe identification of practical early diagnosis biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumour disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (Sarcophilus harrisii). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumour lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analysed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples. The antimicrobial peptide cathelicidin-3 (CATH3) was enriched in serum EVs of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1% specificity). As antimicrobial peptides can play a variety of roles in the cancer process, our results suggest that the specific elevation of serum EV-associated CATH3 may be mechanistically involved in DFTD pathogenesis. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperilled Tasmanian devil population.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 873
Author(s):  
Siobhon L. Egan ◽  
Manuel Ruiz-Aravena ◽  
Jill M. Austen ◽  
Xavier Barton ◽  
Sebastien Comte ◽  
...  

The impact of emerging infectious diseases is increasingly recognised as a major threat to wildlife. Wild populations of the endangered Tasmanian devil, Sarcophilus harrisii, are experiencing devastating losses from a novel transmissible cancer, devil facial tumour disease (DFTD); however, despite the rapid decline of this species, there is currently no information on the presence of haemoprotozoan parasites. In the present study, 95 Tasmanian devil blood samples were collected from four populations in Tasmania, Australia, which underwent molecular screening to detect four major groups of haemoprotozoa: (i) trypanosomes, (ii) piroplasms, (iii) Hepatozoon, and (iv) haemosporidia. Sequence results revealed Trypanosoma infections in 32/95 individuals. Trypanosoma copemani was identified in 10 Tasmanian devils from three sites and a second Trypanosoma sp. was identified in 22 individuals that were grouped within the poorly described T. cyclops clade. A single blood sample was positive for Babesia sp., which most closely matched Babesia lohae. No other blood protozoan parasite DNA was detected. This study provides the first insight into haemoprotozoa from the Tasmanian devil and the first identification of Trypanosoma and Babesia in this carnivorous marsupial.


2019 ◽  
Vol 31 (7) ◽  
pp. 1296 ◽  
Author(s):  
C. E. Grueber ◽  
E. Peel ◽  
B. Wright ◽  
C. J. Hogg ◽  
K. Belov

Tasmanian devils are threatened in the wild by devil facial tumour disease: a transmissible cancer with a high fatality rate. In response, the Save the Tasmanian Devil Program (STDP) established an ‘insurance population’ to enable the preservation of genetic diversity and natural behaviours of devils. This breeding program includes a range of institutions and facilities, from zoo-based intensive enclosures to larger, more natural environments, and a strategic approach has been required to capture and maintain genetic diversity, natural behaviours and to ensure reproductive success. Laboratory-based research, particularly genetics, in tandem with adaptive management has helped the STDP reach its goals, and has directly contributed to the conservation of the species in the wild. Here we review this work and show that the Tasmanian devil breeding program is a powerful example of how genetic research can be used to understand and improve reproductive success in a threatened species.


2015 ◽  
Vol 282 (1814) ◽  
pp. 20151468 ◽  
Author(s):  
Rodrigo K. Hamede ◽  
Anne-Maree Pearse ◽  
Kate Swift ◽  
Leon A. Barmuta ◽  
Elizabeth P. Murchison ◽  
...  

Tasmanian devil facial tumour disease (DFTD) is a clonally transmissible cancer threatening the Tasmanian devil ( Sarcophilus harrisii ) with extinction. Live cancer cells are the infectious agent, transmitted to new hosts when individuals bite each other. Over the 18 years since DFTD was first observed, distinct genetic and karyotypic sublineages have evolved. In this longitudinal study, we investigate the associations between tumour karyotype, epidemic patterns and host demographic response to the disease. Reduced host population effects and low DFTD infection rates were associated with high prevalence of tetraploid tumours. Subsequent replacement by a diploid variant of DFTD coincided with a rapid increase in disease prevalence, population decline and reduced mean age of the population. Our results suggest a role for tumour genetics in DFTD transmission dynamics and epidemic outcome. Future research, for this and other highly pathogenic emerging infectious diseases, should focus on understanding the evolution of host and pathogen genotypes, their effects on susceptibility and tolerance to infection, and their implications for designing novel genetic management strategies. This study provides evidence for a rapid localized lineage replacement occurring within a transmissible cancer epidemic and highlights the possibility that distinct DFTD genetic lineages may harbour traits that influence pathogen fitness.


Author(s):  
Amanda R. Stahlke ◽  
Brendan Epstein ◽  
Soraia Barbosa ◽  
Austin Patton ◽  
Sarah A. Hendricks ◽  
...  

AbstractTasmanian devils (Sarcophilus harrisii) are evolving in response to a unique transmissible cancer, devil facial tumour disease (DFTD), first described in 1996. Persistence of wild populations and the recent emergence of a second independently evolved transmissible cancer suggest that transmissible cancers may be a recurrent feature in devils. We used a targeted sequencing approach, RAD-capture, to identify genomic regions subject to rapid evolution in approximately 2,500 devils as DFTD spread across the species range. We found evidence for genome-wide contemporary evolution, including 186 candidate genes related to cell cycling and immune response. We then searched for signatures of recurrent selection with a molecular evolution approach and found widespread evidence of historical positive selection in devils relative to other marsupials. We identified both contemporary and historical selection in 19 genes and enrichment for contemporary and historical selection independently in 22 gene sets. Nonetheless, the overlap between candidates for historical selection and for contemporary response to DFTD was lower than expected, supporting novelty in the evolutionary response of devils to DFTD. Our results can inform management actions to conserve adaptive capacity of devils by identifying high priority targets for genetic monitoring and maintenance of functional diversity in managed populations.


2018 ◽  
Author(s):  
Veronika Siska ◽  
Anders Eriksson ◽  
Bernhard Mehlig ◽  
Andrea Manica

AbstractThe Devil Facial Tumour Disease (DFTD), a unique case of a transmissible cancer, had a devastating effect on its host, the Tasmanian Devil. Current estimates of its density are at roughly 20% of the pre-disease state, and single-population epidemiological models have predicted the likely extinction of the host. Here we take advantage of extensive surveys across Tasmania providing data on the spatial and temporal spread of DFTD, and investigate the dynamics of this host-pathogen system using a spatial metapopulation model. We first confirm a most likely origin of DFTD in the north-east corner of the island, and then use the inferred dynamics to predict the fate of the species. We find that our medium-term predictions match additional data not used for fitting, and that on the longterm, Tasmanian Devils are predicted to coexist with the tumour. The key process allowing persistence is the repeated reinvasion of extinct patches from neighbouring areas where the disease has flared up and died out, resulting in a dynamic equilibrium with different levels of spatial heterogeneity. However, this dynamic equilibrium is predicted to keep this apex predator at about 9 % of its original density, with possible dramatic effects on the Tasmanian ecosystem.


2013 ◽  
Vol 9 (1) ◽  
pp. 20120900 ◽  
Author(s):  
Katrina Morris ◽  
Jeremy J. Austin ◽  
Katherine Belov

The Tasmanian devil ( Sarcophilus harrisii ) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000926 ◽  
Author(s):  
Young Mi Kwon ◽  
Kevin Gori ◽  
Naomi Park ◽  
Nicole Potts ◽  
Kate Swift ◽  
...  

Devil facial tumour 1 (DFT1) is a transmissible cancer clone endangering the Tasmanian devil. The expansion of DFT1 across Tasmania has been documented, but little is known of its evolutionary history. We analysed genomes of 648 DFT1 tumours collected throughout the disease range between 2003 and 2018. DFT1 diverged early into five clades, three spreading widely and two failing to persist. One clade has replaced others at several sites, and rates of DFT1 coinfection are high. DFT1 gradually accumulates copy number variants (CNVs), and its telomere lengths are short but constant. Recurrent CNVs reveal genes under positive selection, sites of genome instability, and repeated loss of a small derived chromosome. Cultured DFT1 cell lines have increased CNV frequency and undergo highly reproducible convergent evolution. Overall, DFT1 is a remarkably stable lineage whose genome illustrates how cancer cells adapt to diverse environments and persist in a parasitic niche.


Sign in / Sign up

Export Citation Format

Share Document