scholarly journals Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity

2019 ◽  
Vol 12 (4) ◽  
pp. 146 ◽  
Author(s):  
Claudia Riccardi ◽  
Domenica Musumeci ◽  
Marco Trifuoggi ◽  
Carlo Irace ◽  
Luigi Paduano ◽  
...  

The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.

The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


Author(s):  
Ashish Patel ◽  
Ravi Vanecha ◽  
Jay Patel ◽  
Divy Patel ◽  
Umang Shah ◽  
...  

: Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
V. L. Maruthanila ◽  
J. Poornima ◽  
S. Mirunalini

Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out thatBrassicavegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C) belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3′-diindolylmethane (DIM), have been generally investigated for their value against a number of human cancersin vitroas well asin vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel.


Author(s):  
Christian Bailly ◽  
Gérard Vergoten

AbstractPolyprenylated acylphloroglucinols represent an important class of natural products found in many plants. Among them, the two related products oblongifolin C (Ob-C) and guttiferone K (Gt-K) isolated from Garcinia species (notably from edible fruits), have attracted attention due to their marked anticancer properties. The two compounds only differ by the nature of the C-6 side chain, prenyl (Gt-K) or geranyl (Ob-C) on the phloroglucinol core. Their origin, method of extraction and biological properties are presented here, with a focus on the targets and pathways implicated in their anticancer activities. Both compounds markedly reduce cancer cell proliferation in vitro, as well as tumor growth and metastasis in vivo. They are both potent inducer of tumor cell apoptosis, and regulation of autophagy flux is a hallmark of their mode of action. The distinct mechanism leading to autophagosome accumulation in cells and the implicated molecular targets are discussed. The specific role of the chaperone protein HSPA8, known to interact with Ob-C, is addressed. Molecular models of Gt-K and Ob-C bound to HSPA8 provide a structural basis to their common HSPA8-binding recognition capacity. The review shed light on the mechanism of action of these compounds, to encourage their studies and potential development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shashank Kumar ◽  
Kumari Sunita Prajapati ◽  
Mohd Shuaib ◽  
Prem Prakash Kushwaha ◽  
Hardeep Singh Tuli ◽  
...  

In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2–62 µM while in vivo efficacy was studied in the range of 20–500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shailesh Dugam ◽  
Rahul Tade ◽  
Rani Dhole ◽  
Sopan Nangare

Abstract Background Microneedles (MNs) are the utmost unique, efficient, and minimally invasive inventions in the pharmaceutical field. Over the past decades, many scientists around the globe have reported MNs cautious because of their superb future in distinct areas. Concerning the wise use of MNs herein, we deal in depth with the present applications of MNs in drug delivery. Main text The present review comprises various fabrication materials and methods used for MN synthesis. The article also noted the distinctive advantages of these MNs, which holds huge potential for pharmaceutical and biomedical applications. The role of MNs in serving as a platform to treat various ailments has been explained accompanied by unusual approaches. The review also inculcates the pharmacokinetics of MNs, which includes permeation, absorption, and bioavailability enhancement. Besides this, the in vitro/in vivo toxicity, biosafety, and marketed product of MNs have been reviewed. We have also discussed the clinical trials and patents on the pharmaceutical applications of MNs in brief. Conclusion To sum up, this article gives insight into the MNs and provides a recent advancement in MNs, which pave the pathway for future pharmaceutical and biomedical applications. Graphical abstract Pharmaceutical and biomedical applications of MNs


Author(s):  
Simona Ioana Vicaş ◽  
Carmen Socaciu

Extracts of Viscum album (mistletoe) are widely used as complementary cancer therapies in Europe. The mistletoe lectins and viscotoxins have been identified as the main principle of mistletoe extracts that participating in biological activity of V. album. These compounds were isolated and studied in vitro and in vivo for their biological activity and mechanism of action. A comparison of the results to those using whole extracts indicated that lectins and viscotoxins are not the only bioactive compounds present in the mistletoe. In this paper, we review the recent studies regarding with cytotoxic activity on tumor cells of mistletoe extracts, as well as, the role of this semiparasitic plant in diabetics and hypertension illness.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13509-e13509
Author(s):  
Roberto Bianco ◽  
Roberta Rosa ◽  
Lucia Nappi ◽  
Luigi Formisano ◽  
Vincenzo Damiano ◽  
...  

e13509 Background: Although EGFR inhibitors, such as the mAb cetuximab, represent an effective strategy in colorectal cancer (CRC), the clinical use of these agents is limited by intrinsic or acquired resistance. Alterations in the ‘sphingolipid rheostat’, or the balance between the proapoptotic molecule ceramide and the mitogenic factor sphingosine-1-phosphate (S1P), due to overactivation of sphingosine kinase 1 (SphK1), have been involved in the regulation of resistance to anticancer agents. Since some studies described cross-talks between SphK1 and EGFR-dependent signalling pathways, we investigated the contribution of SphK1 to cetuximab resistance in CRC models. Methods: We used CRC cell lines with both intrinsic or acquired resistance to cetuximab. In these models, we analyzed SphK1 expression/activation by using different tools, including the available drug fingolimod (FTY720), both in vitro and in vivo. We confirmed our data through a tissue microarray (TMA)-based analysis on CRC tissues. Results: SphK1 is overexpressed in CRC cells resistant to cetuximab. Higher doses of N,N-dimethylsphingosine (DMS), a potent competitive inhibitor of SphK1, are needed to achieve complete enzyme saturation and survival inhibition in resistant cells. Moreover, ceramide induces apoptosis less efficiently in resistant than in sensitive cells, consistently with the idea that increased SphK1 levels mediate S1P synthesis by ceramide in resistant cells. SphK1 contribution to resistance is supported by the demonstration that SphK1 inhibition by DMS or silencing via siRNA in resistant cells restores sensitivity to cetuximab, whereas exogenous SphK1 overexpression in wild-type cells confers resistance. Re-sensitization to cetuximab is observed after treatment with fingolimod, a S1P receptor inhibitor, both in vitro and in nude mice xenografted with CRC cells. Finally, a TMA-based analysis on CRC tissues revealed that SphK1 expression is related to K-Ras mutational status, a well-known determinant of cetuximab resistance. Conclusions: Our data could clarify the role of SphK1 in the onset of resistance to cetuximab, thus suggesting SphK1 inhibition as a part of novel targeting strategies for resistant cancer patients.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Nadia Saadat ◽  
Smiti V. Gupta

Garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit ofGarcinia indica, a plant found extensively in tropical regions. Although the fruit has been consumed traditionally over centuries, its biological activities, specifically its anticancer potential is a result of recent scientific investigations. The anticarcinogenic properties of garcinol appear to be moderated via its antioxidative, anti-inflammatory, antiangiogenic, and proapoptotic activities. In addition, garcinol displays effective epigenetic influence by inhibiting histone acetyltransferases (HAT 300) and by possible posttranscriptional modulation by mi RNA profiles involved in carcinogenesis.In vitroas well as somein vivostudies have shown the potential of this compound against several cancers types including breast, colon, pancreatic, and leukemia. Although this is a promising molecule in terms of its anticancer properties, investigations in relevant animal models, and subsequent human trials are warranted in order to fully appreciate and confirm its chemopreventative and/or therapeutic potential.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jin-Jian Lu ◽  
Jiao-Lin Bao ◽  
Xiu-Ping Chen ◽  
Min Huang ◽  
Yi-Tao Wang

Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers bothin vitroandin vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made.


Sign in / Sign up

Export Citation Format

Share Document