scholarly journals Biological Evaluation of Arylsemicarbazone Derivatives as Potential Anticancer Agents

2019 ◽  
Vol 12 (4) ◽  
pp. 169
Author(s):  
Anne Cecília Nascimento da Cruz ◽  
Dalci José Brondani ◽  
Temístocles I´talo de Santana ◽  
Lucas Oliveira da Silva ◽  
Elizabeth Fernanda da Oliveira Borba ◽  
...  

Fourteen arylsemicarbazone derivatives were synthesized and evaluated in order to find agents with potential anticancer activity. Cytotoxic screening was performed against K562, HL-60, MOLT-4, HEp-2, NCI-H292, HT-29 and MCF-7 tumor cell lines. Compounds 3c and 4a were active against the tested cancer cell lines, being more cytotoxic for the HL-60 cell line with IC50 values of 13.08 μM and 11.38 μM, respectively. Regarding the protein kinase inhibition assay, 3c inhibited seven different kinases and 4a strongly inhibited the CK1δ/ε kinase. The studied kinases are involved in several cellular functions such as proliferation, migration, cell death and cell cycle progression. Additional analysis by flow cytometry revealed that 3c and 4a caused depolarization of the mitochondrial membrane, suggesting apoptosis mediated by the intrinsic pathway. Compound 3c induced arrest in G1 phase of the cell cycle on HL-60 cells, and in the annexin V assay approximately 50% of cells were in apoptosis at the highest concentration tested (26 μM). Compound 4a inhibited cell cycle by accumulation of abnormal postmitotic cells at G1 phase and induced DNA fragmentation at the highest concentration (22 μM).

Author(s):  
Burcugül Altuğ-Tasa ◽  
Betül Kaya-Çavuşoğlu ◽  
Ayşe T. Koparal ◽  
Gülhan Turan ◽  
Ali S. Koparal ◽  
...  

Background: Thiadiazole has attracted a great deal of interest as a versatile heterocycle for the discovery and development of potent anticancer agents. Thiadiazole derivatives exert potent antitumor activity against a variety of human cancer cell lines through various mechanisms. Objective: The goal of this work was to design and synthesize thiadiazole-based anticancer agents with anti-angiogenic activity. Methods: N-aryl-2-[(5-(aryl)amino-1,3,4-thiadiazol-2-yl)thio]acetamides (4a-r) were synthesized via the reaction of 5-(aryl)amino-1,3,4- thiadiazole-2(3H)-thiones with N-(aryl)-2-chloroacetamides in the presence of potassium carbonate. The compounds were investigated for their cytotoxic effects on three cancer (A549, HepG2, SH-SY5Y), two normal (HUVEC and 3T3-L1) cell lines using MTT and WST1 assays. In order to examine whether the compounds have anti-angiogenic effects or not, HUVEC were cultured on matrigel matrix to create a vascular-like tube formation. Results: Compounds 4d, 4m and 4n were more effective on A549 human lung adenocarcinoma cells than cisplatin. The IC50 values of compounds 4d, 4m and 4n for A549 cell line were found to be 7.82±0.4, 12.5±0.22, 10.1±0.52 µM, respectively when compared with cisplatin (IC50= 20±0.51 µM), whilst their IC50 values for HUVEC cell line were determined as 138.7±0.84, 78±0.44, 177.6±0.2 µM, respectively after 48 h treatment. The concentrations (10-20-50 µM) of compounds 4d, 4e, 4l, 4m, 4n, 4q and 4r were found to inhibit vascular like tube formation. Conclusion: According to their anticancer and anti-angiogenic effects, compounds 4d, 4m and 4n may be potential anticancer agents for further in vivo studies.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3944
Author(s):  
José de Jesús Manríquez-Torres ◽  
Marco Antonio Hernández-Lepe ◽  
José Román Chávez-Méndez ◽  
Susana González-Reyes ◽  
Idanya Rubí Serafín-Higuera ◽  
...  

In research on natural molecules with cytotoxic activity that can be used for the development of new anticancer agents, the cytotoxic activity of hexane, chloroform, and methanol extracts from the roots of Acacia schaffneri against colon, lung, and skin cancer cell lines was explored. The hexane extract showed the best activity with an average IC50 of 10.6 µg mL−1. From this extract, three diterpenoids, phyllocladan-16α,19-diol (1), phyllocladan-16α-ol (2), and phylloclad-16-en-3-ol (3), were isolated and characterized by their physical and spectroscopic properties. Diterpenoids 1 and 2 were tested against the same cancer cell lines, as well as their healthy counterparts, CCD841 CoN, MRC5, and VH10, respectively. Compound 1 showed moderate activity (IC50 values between 24 and 70 μg mL−1), although it showed a selective effect against cancer cell lines. Compound 2 was practically inactive. The cytotoxicity mechanism of 1 was analyzed by cell cycle, indicating that the compound induces G0/G1 cell cycle arrest. This effect might be generated by DNA alkylation damage. In addition, compound 1 decreased migration of HT29 cells.


MedChemComm ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 636-645 ◽  
Author(s):  
Hongtao Du ◽  
Hongling Gu ◽  
Na Li ◽  
Junru Wang

A series of novel bivalent β-carbolines were synthesized and evaluated for their anti-proliferative activities on a panel of cancer cell lines, apoptosis induction and cell cycle effects.


1994 ◽  
Vol 14 (6) ◽  
pp. 291-300 ◽  
Author(s):  
Timo Joensuu ◽  
Jan Mester

The effect of sodium butyrate (NaBut) on cell growth was studied in normal rat kidney (NRK) fibroblasts, and in NRK cells stably transfected with either the adenoviral gene E1A (wild-type), or mutated E1A (E1Amut; with a deletion in the CR1 domain), or with the transforming Ha-ras (EJ) gene. The growth of all these cell lines was inhibited by milimolar concentrations of sodium butyrate (NaBut). However, whereas the NRK cells as well as the NRK-E1Amut and NRK-ras cells were arrested in the G1 phase of the cell cycle, the NRK-E1A cells progressively accumulated in the G2 phase, suggesting that the E1A gene expression caused a “leaky” inhibition of G1 phase progression. The expression of late cell cycle-related genes cdc2 and PCNA (proliferating cell nuclear antigen) was not affected by NaBut in the NRK-E1A cells while it was totally suppressed in the other NRK-derived cell lines.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6388
Author(s):  
Daniella A. Gomes ◽  
Anna M. Joubert ◽  
Michelle H. Visagie

Papaverine (PPV) is an alkaloid isolated from the Papaver somniferum. Research has shown that PPV inhibits proliferation. However, several questions remain regarding the effects of PPV in tumorigenic cells. In this study, the influence of PPV was investigated on the proliferation (spectrophotometry), morphology (light microscopy), oxidative stress (fluorescent microscopy), and cell cycle progression (flow cytometry) in MDA-MB-231, A549, and DU145 cell lines. Exposure to 150 μM PPV resulted in time- and dose-dependent antiproliferative activity with reduced cell growth to 56%, 53%, and 64% in the MDA-MB-231, A549, and DU145 cell lines, respectively. Light microscopy revealed that PPV exposure increased cellular protrusions in MDA-MB-231 and A549 cells to 34% and 23%. Hydrogen peroxide production increased to 1.04-, 1.02-, and 1.44-fold in PPV-treated MDA-MB-231, A549, and DU145 cells, respectively, compared to cells propagated in growth medium. Furthermore, exposure to PPV resulted in an increase of cells in the sub-G1 phase by 46% and endoreduplication by 10% compared to cells propagated in growth medium that presented with 2.8% cells in the sub-G1 phase and less than 1% in endoreduplication. The results of this study contribute to understanding of effects of PPV on cancer cell lines.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2950 ◽  
Author(s):  
Chen ◽  
Guo ◽  
Ma ◽  
Chen ◽  
Fan ◽  
...  

Utilizing a pharmacophore hybridization approach, we have designed and synthesized a novel series of 28 new heterobivalent β-carbolines. The in vitro cytotoxic potential of each compound was evaluated against the five cancer cell lines (LLC, BGC-823, CT-26, Bel-7402, and MCF-7) of different origin—murine and human, with the aim of determining the potency and selectivity of the compounds. Compound 8z showed antitumor activities with half-maximal inhibitory concentration (IC50) values of 9.9 ± 0.9, 8.6 ± 1.4, 6.2 ± 2.5, 9.9 ± 0.5, and 5.7 ± 1.2 µM against the tested five cancer cell lines. Moreover, the effect of compound 8z on the angiogenesis process was investigated using a chicken chorioallantoic membrane (CAM) in vivo model. At a concentration of 5 μM, compound 8z showed a positive effect on angiogenesis. The results of this study contribute to the further elucidation of the biological regulatory role of heterobivalent β-carbolines and provide helpful information on the development of vascular targeting antitumor drugs.


2020 ◽  
Vol 17 (3) ◽  
pp. 216-223
Author(s):  
Jalal Nourmahammadi ◽  
Ebrahim Saeedian Moghadam ◽  
Zahra Shahsavari ◽  
Mohsen Amini

Cancer is one of the major causes of mortality all around the world. Globally, nearly 1 in 6 deaths is due to cancer. Researchers are trying to synthesize new anticancer agents. Previous studies demonstrated that some pyrazole derivatives could be considered as potential anticancer agents. Herein, ten novel derivatives of 1,5-diarylpyrazole were synthesized in four step reactions and cytotoxic activity was investigated by MTT cell viability assay. All of the compounds were characterized by 1H NMR and 13C NMR and their purity was confirmed by elemental analysis. The cytotoxicity was determined against three cancerous cell lines (HT-29, U87MG and MDA-MB 468) and AGO1522 as a normal cell line. Compound 5a showed the best cytotoxic activity on cancerous cell lines in comparison to paclitaxel. Annexin V/ PI staining assay also showed that compounds 5a and 5i would lead to significant apoptosis induction in MDA-MB 486 cell line.


Author(s):  
Qian Li ◽  
Hui Zhao ◽  
Weimin Chen ◽  
Ping Huang

IntroductionTo examine the anti-cancer effects of berberine on multiple cancer cell lines; and to clarify the underlying molecular mechanisms.Material and methodsThe IC50 values of berberine on Tca8113 (oral squamous cell carcinoma), CNE2 (nasopharyngeal carcinoma cell), MCF-7 (breast cancer), Hela (cervical carcinoma), and HT29 (colon cancer) cells were determined by MTT cell viability assay. Early apoptosis and cell cycle arrest was examined by flow cytometry with annexin V and propidium iodide (PI) staining, respectively. For expressions of BAX and BCL-2 genes and proteins were detected by real-time PCR and western blotting, respectively.ResultsBerberine displayed cytotoxic effect on all the cell lines tested. The IC50 values were determined (Tca8113, 218.52±18.71; CNE2, 249.18±18.14; MCF-7, 272.15±11.06; Hela, 245.18±17.33; and HT29, 52.37±3.45). PI staining revealed berberine treatment resulted in cell cycle arrest at G2/M. The treatment also induced early apoptosis as shown by annexin V staining. In addition, berberine significant elevated gene and protein expression of BAX, which was accompanied by substantial decreases in BCL-2 gene and protein levels. The effects of berberine on BAX and BCL-2 were time-dependent.ConclusionsBerberine exhibited cytotoxic effects on multiple cancer cell lines by inducing apoptosis and cell cycle arrest. The BCL-2/BAX signaling pathway may be the common pathway underlying the anti-tumor effect of berberine. The findings support the notion that berberine is a dietary compound that can be further developed into a drug candidate for cancer treatment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1363-1363 ◽  
Author(s):  
Mathias A. Schneeweiss ◽  
Gabriele Stefanzl ◽  
Daniela Berger ◽  
Gregor Eisenwort ◽  
Mohamad Jawhar ◽  
...  

Abstract Aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL) are rare, malignant diseases with an unfavorable prognosis. In a majority of patients, the transforming KIT mutation D816V is detectable. Currently, several drugs are available for the treatment of ASM/MCL, including midostaurin, a KIT D816V-targeting drug that has recently been approved for the treatment of advanced SM in the US and in Europe. However, when applied as single drug, midostaurin usually fails to induce durable remissions in patients with ASM/MCL, and the same holds true for all other drugs tested in the ASM/MCL context so far. Therefore, drug combinations, including established drugs and novel targeted drugs are currently being examined for their anti-neoplastic effects in ASM/MCL. CDK4 and CDK6 are kinases that play an essential role in cell cycle-initiation in normal and neoplastic cells. However, the role of CDK4/6 as potential therapeutic targets in neoplastic mast cells (MC) has not been analyzed so far. Recently, three CDK4/6 inhibitors, palbociclib, ribociclib and abemaciclib, have been translated into clinical application. The aim of the current study was to evaluate the effects of these CDK4/6 inhibitors on cell cycle progression, proliferation and survival of neoplastic MC. In initial experiments, we employed the MCL-related cell lines HMC-1.1 (lacking KIT D816V), HMC-1.2 (KIT D816V+), ROSAKIT WT, ROSAKIT D816V and MCPV-1 (expressing RAS G12V, Large T and hTert). In 3H-thymidine incorporation experiments, all three CDK4/6-inhibitors were found to block proliferation in both HMC-1 sub-clones and both ROSA sub-clones, with comparable IC50 values (<0.5 µM). In MCPV-1 cells, similar results were obtained, but higher concentrations of palbociclib, ribociclib and abemaciclib were required to block proliferation (IC50 1-5 µM). These data suggest that CDK4/6-inhibitors exert anti-proliferative effects in neoplastic MC independent of the presence of KIT D816V. In a next step, we examined drug effects on primary bone marrow cells obtained from patients with KIT D816V+ indolent SM (n=3), ASM (n=1), SM with an associated hematologic neoplasm, ASM-AHN (n=5) and MCL (n=2). As determined by 3H-thymidine uptake, palbociclib was found to inhibit cell proliferation at pharmacologically meaningful concentrations in all donors tested, with IC50 values ranging between 5 nM and 250 nM. Similar effects were obtained when applying ribociclib (25-500 nM) and abemaciclib (5-500 nM). To learn more about the mechanisms underlying the effects of the CDK4/6 inhibitors on neoplastic MC, cell cycle progression and apoptosis were examined in HMC-1.1 and HMC-1.2 cells after drug exposure. In both cell lines, the palbociclib-induced growth inhibition was found to be accompanied by cell cycle arrest in the G1-phase. Moreover, all three CDK4/6 inhibitors were found to produce time- and dose-dependent apoptosis in HMC-1.1 and HMC-1.2 cells during 72 hours of incubation. In a next step, Western blot experiments were performed using antibodies against the main downstream target of CDK6, retinoblastoma protein-1 (Rb-1). The Rb-1 antigen was found to be expressed in phosphorylated form (p-Rb-1) in HMC-1.1 and HMC-1.2 cells. As expected, all 3 CDK4/6 inhibitors were found to suppress p-Rb-1 expression in both HMC-1 cell lines, suggesting specific drug effects. In a final step, we examined potential cooperative drug effects using palbociclib and the KIT D816V-targeting drug midostaurin. In these experiments, palbociclib was found to synergize with midostaurin in inducing growth inhibition in HMC-1 cells. In conclusion our data suggest that inhibition of CDK4/6 may be a new promising approach for the treatment of patients with advanced SM. In addition, our data suggest that CDK4/6 inhibitors may represent promising combination partners for midostaurin in the treatment of ASM/MCL. Whether treatment with CDK4/6 inhibitors alone or in combination with KIT inhibition, is indeed sufficient to control proliferation of neoplastic MC in vivo in patients with advanced SM remains to be determined in forthcoming studies. Disclosures Hoermann: Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria; Pfizer: Honoraria. Sperr:Novartis: Honoraria; Pfizer: Honoraria; Daiichi Sankyo: Honoraria. Reiter:Incyte: Consultancy, Honoraria. Valent:Incyte: Honoraria; Pfizer: Honoraria; Novartis: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document