scholarly journals Host-Directed FDA-Approved Drugs with Antiviral Activity against SARS-CoV-2 Identified by Hierarchical In Silico/In Vitro Screening Methods

2021 ◽  
Vol 14 (4) ◽  
pp. 332
Author(s):  
Tiziana Ginex ◽  
Urtzi Garaigorta ◽  
David Ramírez ◽  
Victoria Castro ◽  
Vanesa Nozal ◽  
...  

The unprecedent situation generated by the COVID-19 global emergency has prompted us to actively work to fight against this pandemic by searching for repurposable agents among FDA approved drugs to shed light into immediate opportunities for the treatment of COVID-19 patients. In the attempt to proceed toward a proper rationalization of the search for new antivirals among approved drugs, we carried out a hierarchical in silico/in vitro protocol which successfully combines virtual and biological screening to speed up the identification of host-directed therapies against COVID-19 in an effective way. To this end a multi-target virtual screening approach focused on host-based targets related to viral entry, followed by the experimental evaluation of the antiviral activity of selected compounds, has been carried out. As a result, five different potentially repurposable drugs interfering with viral entry—cepharantine, clofazimine, metergoline, imatinib and efloxate—have been identified.

2020 ◽  
Author(s):  
Tiziana Ginex ◽  
Urtzi Garaigorta ◽  
David Ramírez ◽  
Victoria Castro ◽  
Vanesa Nozal ◽  
...  

AbstractThe unprecedent situation generated by the COVID-19 global emergency has prompted scientists around the world to actively work to fight against this pandemic. In this sense, it is remarkable the number of drug repurposing efforts trying to shed light into the COVID-19 patients’ treatment.In the attempt to proceed toward a proper rationalization of the search for new antivirals among approved drugs, we carried out a hierarchical in silico/in vitro protocol which successfully combines virtual and biological screening to speed up the identification of host-directed therapies against COVID-19 in an effective way.A successful combination of a multi-target virtual screening approach focused on host-based targets related to viral entry and experimental evaluation of the antiviral activity of selected compounds has been carried out. As a result, three different potentially repurposable drugs interfering with viral entry, cepharantine, imatinib and efloxate, have been identified.


Author(s):  
Neetu Agrawal ◽  
Shilpi Pathak ◽  
Ahsas Goyal

: The entire world has been in a battle against the COVID-19 pandemic since its first appearance in December 2019. Thus researchers are desperately working to find an effective and safe therapeutic agent for its treatment. The multifunctional coronavirus enzyme papain-like protease (PLpro) is a potential target for drug discovery to combat the ongoing pandemic responsible for cleavage of the polypeptide, deISGylation, and suppression of host immune response. The present review collates the in silico studies performed on various FDA-approved drugs, chemical compounds, and phytochemicals from various drug databases and represents the compounds possessing the potential to inhibit PLpro. Thus this review can provide quick access to a potential candidate to medicinal chemists to perform in vitro and in vivo experiments who are thriving to find the effective agents for the treatment of COVID-19.


Author(s):  
Stuart Weston ◽  
Christopher M. Coleman ◽  
Rob Haupt ◽  
James Logue ◽  
Krystal Matthews ◽  
...  

AbstractSARS-CoV-2 emerged in China at the end of 2019 and has rapidly become a pandemic with roughly 2.7 million recorded COVID-19 cases and greater than 189,000 recorded deaths by April 23rd, 2020 (www.WHO.org). There are no FDA approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA approved drugs. Rapid development and human testing of potential antivirals is greatly needed. A quick way to test compounds with potential antiviral activity is through drug repurposing. Numerous drugs are already approved for human use and subsequently there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV. We found that 17 of these inhibit SARS-CoV-2 at a range of IC50 values at non-cytotoxic concentrations. We directly follow up with seven of these to demonstrate all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we have evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found both drugs protect mice from clinical disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Campione ◽  
Caterina Lanna ◽  
Terenzio Cosio ◽  
Luigi Rosa ◽  
Maria Pia Conte ◽  
...  

Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 μg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.


2021 ◽  
Author(s):  
Mahmoud Ahmed ◽  
Ayman Farag ◽  
Ian N. Boys ◽  
Ping Wang ◽  
Jennifer L. Eitson ◽  
...  

Given the continuing heavy toll of the COVID-19 pandemic, therapeutic options for treatment are urgently needed. Here, we adopted a repositioning approach using in silico molecular modeling to screen FDA-approved drugs with established safety profiles for potential inhibitory effects against SARS-CoV-2. We used structure-based drug design to screen more than 2000 FDA approved drugs against SARS-CoV-2 main protease enzyme (Mpro) substrate-binding pocket. We additionally screened the top hits from both sites for potential covalent binding via nucleophilic thiol attack of Cys 145. High-scoring candidates were then screened for antiviral activity against infectious SARS-CoV-2 in a cell-based viral replication assay, and counter screened for toxicity. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. In addition, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 M), mebendazole (IC50 19 M) and entacapone (IC50 9 M). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential antiviral mechanisms. Although atovaquone is a known DHODH inhibitor, we did not observe inhibition of DHODH by atovaquone at concentrations relevant to the SARS-CoV-2 IC50. Interestingly, metabolomic profiling of atovaquone treated cells demonstrated marked dysregulation of metabolites in the purine metabolism pathway. In summary, a number of our top hits from the in-silico screen demonstrated Mpro inhibitory activity associated with antiviral effects. Atovaquone and mebendazole are the most promising candidates targeting SARS-CoV-2 from our screen, however atovaquone did not significantly inhibit Mpro at therapeutically meaningful concentrations but may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.


2020 ◽  
Vol 13 (12) ◽  
pp. 443
Author(s):  
Ahmed Mostafa ◽  
Ahmed Kandeil ◽  
Yaseen A. M. M. Elshaier ◽  
Omnia Kutkat ◽  
Yassmin Moatasim ◽  
...  

(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.


2017 ◽  
Author(s):  
Sridharan Brindha ◽  
Jagadish Chandrabose Sundaramurthi ◽  
Savariar Vincent ◽  
Devadasan Velmurugan ◽  
John Joel Gnanadoss

AbstractMotivationRepurposing of known drugs to newer clinical conditions is a promising avenue for finding novel therapeutic applications for tuberculosis.MethodsWe performed docking-based virtual screening for 1554 known drugs against two of the potential drug targets, namely trpD and coaA of M. tuberculosis. In the first round of in silico screening we used rigid docking using Glide and AutoDock Vina. We subjected the consistently ranked drugs for induced-fit docking by these tools against the same target proteins. We performed luciferase reporter phage (LRP) assay to determine the biological activity of five selected drugs against M. tuberculosis.ResultsWe observed lymecycline and cefpodoxime to be active against drug susceptible and drug resistant strains of M. tuberculosis. In addition, lymecycline and cefpodoxime showed synergistic activity with rifampin and isoniazid against M. tuberculosis.ConclusionOur results suggest that lymecycline and cefpodoxime have potential to be repurposed for the treatment of tuberculosis.


Author(s):  
Igor José dos Santos Nascimento ◽  
Thiago Mendonça de Aquino ◽  
Edeildo Ferreira da Silva-Júnior

Background: Since the end of 2019, the etiologic agent SAR-CoV-2 responsible for one of the most significant epidemics in history has caused severe global economic, social, and health damages. The drug repurposing approach and application of Structure-based Drug Discovery (SBDD) using in silico techniques are increasingly frequent, leading to the identification of several molecules that may represent promising potential. Method: In this context, here we use in silico methods of virtual screening (VS), pharmacophore modeling (PM), and fragment-based drug design (FBDD), in addition to molecular dynamics (MD), molecular mechanics/Poisson-Boltzmann surface area (MM -PBSA) calculations, and covalent docking (CD) for the identification of potential treatments against SARS-CoV-2. We initially validated the docking protocol followed by VS in 1,613 FDA-approved drugs obtained from the ZINC database. Thus, we identified 15 top hits, of which three of them were selected for further simulations. In parallel, for the compounds with a fit score value ≤ of 30, we performed the FBDD protocol, where we designed 12 compounds Result: By applying a PM protocol in the ZINC database, we identified three promising drug candidates. Then, the 9 top hits were evaluated in simulations of MD, MM-PBSA, and CD. Subsequently, MD showed that all identified hits showed stability at the active site without significant changes in the protein's structural integrity, as evidenced by the RMSD, RMSF, Rg, SASA graphics. They also showed interactions with the catalytic dyad (His41 and Cys145) and other essential residues for activity (Glu166 and Gln189) and high affinity for MM-PBSA, with possible covalent inhibition mechanism. Conclution: Finally, our protocol helped identify potential compounds wherein ZINC896717 (Zafirlukast), ZINC1546066 (Erlotinib), and ZINC1554274 (Rilpivirine) were more promising and could be explored in vitro, in vivo, and clinical trials to prove their potential as antiviral agents.


2020 ◽  
Author(s):  
Laura Jeffreys ◽  
Shaun H Pennington ◽  
Jack Duggan ◽  
Alastair Breen ◽  
Jessica Jinks ◽  
...  

AbstractA key element to the prevention and management of the COVID-19 pandemic is the development of effective therapeutics. Drug combination strategies of repurposed drugs offer a number of advantages to monotherapies including the potential to achieve greater efficacy, the potential to increase the therapeutic index of drugs and the potential to reduce the emergence of drug resistance. Combination of agents with antiviral mechanisms of action with immune-modulatory or anti-inflammatory drug is also worthy of investigation. Here, we report on the in vitro synergistic interaction between two FDA approved drugs, remdesivir (RDV) and ivermectin (IVM) resulting in enhanced antiviral activity against SARS-CoV-2, the causative pathogen of COVID-19. These findings warrant further investigations into the clinical potential of this combination, together with studies to define the underlying mechanism.


Sign in / Sign up

Export Citation Format

Share Document