scholarly journals Efficient Matrix Cleanup of Soft-Gel-Type Dietary Supplements for Rapid Screening of 92 Illegal Adulterants Using EMR-Lipid dSPE and UHPLC-Q/TOF-MS

2021 ◽  
Vol 14 (6) ◽  
pp. 570
Author(s):  
Beomhee Kim ◽  
Wonwoong Lee ◽  
Youlee Kim ◽  
Jihyun Lee ◽  
Jongki Hong

An efficient matrix cleanup method was developed for the rapid screening of 92 illegal adulterants (25 erectile dysfunction drugs, 15 steroids, seven anabolic steroids, 12 antihistamines, 12 nonsteroidal anti-inflammatory drugs (NSAIDs), four diuretics, and 17 weight-loss drugs) in soft-gel-type supplements by ultra-high performance liquid chromatography-quadrupole/time of flight-mass spectrometry (UHPLC-Q/TOF-MS). As representative green chemistry methods, three sample preparation methods (dispersive liquid-liquid microextraction (DLLME), “quick, easy, cheap, effective, rugged, and safe” dispersive solid-phase extraction (QuEChERS-dSPE), and enhanced matrix removal-lipid (EMR-Lipid) dSPE) were evaluated for matrix removal efficiency, recovery rate, and matrix effect. In this study, EMR-Lipid dSPE was shown to effectively remove complicated matrix contents in soft-gels, compared to DLLME and QuEChERS-dSPE. For the rapid screening of a wide range of adulterants, extracted common ion chromatogram (ECIC) and neutral loss scan (NLS) based on specific common MS/MS fragments were applied to randomly collected soft-gel-type dietary supplement samples using UHPLC-Q/TOF-MS. Both ECICs and NLSs enabled rapid and simple screening of multi-class adulterants and could be an alternative to the multiple reaction monitoring (MRM) method. The developed method was validated in terms of limit of detection (LOD), precision, accuracy, recovery, and matrix effects. The range of LODs was 0.1–16 ng/g. The overall precision values were within 0.09–14.65%. The accuracy ranged from 81.6% to 116.6%. The recoveries and matrix effects of 92 illegal adulterants ranged within 16.9–119.4% and 69.8–114.8%, respectively. The established method was successfully applied to screen and identify 92 illegal adulterants in soft-gels. This method can be a promising tool for the high-throughput screening of various adulterants in dietary supplements and could be used as a more environmentally friendly routine analytical method for screening dietary supplements illegally adulterated with multi-class drug substances.

Separations ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 13
Author(s):  
Petra Ranušová ◽  
Ildikó Matušíková ◽  
Peter Nemeček

A solid-phase extraction (SPE) procedure was developed for simultaneous monitoring of sixteen different phenolics of various polarity, quantified by high-performance liquid chromatography (HPLC). The procedure allowed screening the accumulation of intermediates in different metabolic pathways that play a crucial role in plant physiology and/or are beneficial for human health. Metabolites mostly involved in phenylpropanoid, shikimate, and polyketide pathways comprise chlorogenic acid, gentisic acid, vanillic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, quercetin, epicatechin, gallic acid, sinapic acid, p-coumaric acid, o-coumaric acid, vanillin; two rarely quantified metabolites, 2,5-dimethoxybenzoic acid and 4-methoxycinnamic acid, were included as well. The procedure offered low cost, good overall efficiency, and applicability in laboratories with standard laboratory equipment. SPE recoveries were up to 99.8% at various concentration levels. The method allowed for routine analysis of compounds with a wide range of polarity within a single run, while its applicability was demonstrated for various model plant species (tobacco, wheat, and soybean), as well as different tissue types (shoots and roots).


2020 ◽  
Vol 42 (1) ◽  
pp. 31-31
Author(s):  
Malik H Alaloosh Alamri Malik H Alaloosh Alamri ◽  
Sadeem Subhi Abed and Abdulkareem M A Alsammarraie Sadeem Subhi Abed and Abdulkareem M A Alsammarraie

Bendiocarb (BEN) is an acutely toxic carbamate insecticide which used in public places and agriculture, it is also effective against a wide range of nuisance and disease vector insects. A new rapid and sensitive reverse flow injection spectrophotometric procedure coupled with on-line solid-phase reactor is designed in this article for the determination of BEN in its insecticidal formulations and water samples, by using three different solid-phase reactors containing bulk PbO2 (B-SPR), PbO2 nanoparticles (N-SPR) and grafted nanoparticles of SiO2-PbO2 (G-SPR) immobilized on cellulose acetate matrix (CA). This method of oxidative coupling is based on alkaline hydrolysis of the BEN pesticide, and then coupled with N,N dimethyl-p-phenylenediamine sulphate (DMPD) to give a blue color product which measured at λmax 675 nm. It worth to mentioned that under optimal conditions, Beer’s law is obeyed in the range of 1-175 μg mL-1 for B-SPR and 0.25-70 μg mL-1 of BEN for both N-SPR and G-SPR respectively within limit of detection (LOD) of 0.931, 0.234 and 0.210 μg mL-1 for B-SPR N-SPR and G-SPR respectively. The surface methodology of the solid phase was also investigated by using atomic force microscopy.


Biosensors ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 13 ◽  
Author(s):  
Brian De La Franier ◽  
Michael Thompson

Lysophosphatidic acid (LPA) is present during the medical condition of ovarian cancer at all stages of the disease, and, therefore possesses considerable potential as a biomarker for screening its presence in female patients. Unfortunately, there is currently no clinically employable assay for this biomarker. In the present work, we introduce a test based on the duel protein system of actin and gelsolin that could allow the quantitative measurement of LPA in serum samples in a biosensing format. In order to evaluate this possibility, actin protein was dye-modified and complexed with gelsolin protein, followed by surface deposition onto silica nanoparticles. This solid-phase system was exposed to serum samples containing various concentrations of LPA and analyzed by fluorescence microscopy. Measurements conducted for the LPA-containing serum samples were higher after exposure to the developed test than samples without LPA. Early results suggest a limit of detection of 5 μM LPA in serum. The eventual goal is to employ the chemistry described here in a biosensor configuration for the large population-scale, rapid screening of women for the potential occurrence of ovarian cancer.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Min He ◽  
Eduard van Wijk ◽  
Ruud Berger ◽  
Mei Wang ◽  
Katrin Strassburg ◽  
...  

Oxylipins play important roles in various biological processes and are considered as mediators of inflammation for a wide range of diseases such as rheumatoid arthritis (RA). The purpose of this research was to study differences in oxylipin levels between a widely used collagen induced arthritis (CIA) mice model and healthy control (Ctrl) mice. DBA/1J male mice (age: 6-7 weeks) were selected and randomly divided into two groups, namely, a CIA and a Ctrl group. The CIA mice were injected intraperitoneally (i.p.) with the joint cartilage component collagen type II (CII) and an adjuvant injection of lipopolysaccharide (LPS). Oxylipin metabolites were extracted from plasma for each individual sample using solid phase extraction (SPE) and were detected with high performance liquid chromatography/tandem mass spectrometry (HPLC-ESI-MS/MS), using dynamic multiple reaction monitoring (dMRM). Both univariate and multivariate statistical analyses were applied. The results in univariate Student’st-test revealed 10 significantly up- or downregulated oxylipins in CIA mice, which were supplemented by another 6 additional oxylipins, contributing to group clustering upon multivariate analysis. The dysregulation of these oxylipins revealed the presence of ROS-generated oxylipins and an increase of inflammation in CIA mice. The results also suggested that the collagen induced arthritis might associate with dysregulation of apoptosis, possibly inhibited by activated NF-κB because of insufficient PPAR-γligands.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xin Shao ◽  
Jie Zhao ◽  
Xu Wang ◽  
Yi Tao

Qing-Hua-Yu-Re-Formula (QHYRF), a new herbal preparation, has been extensively used for treating diabetic cardiomyopathy. However, the chemical constituents of QHYRF remain uninvestigated. In the present study, rapid ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was used to qualitatively analyze the components of QHYRF. Qualitative detection was performed on a Kromasil C18 column through the gradient elution mode, using acetonitrile-water containing 0.1% formic acid. Twenty-seven compounds were identified or tentatively characterized, including 12 phenolic acids, nine monoterpene glycosides, two flavonoids, three iridoids, and one unknown compound. Among these, six compounds were confirmed by comparing with standards. A high-performance liquid chromatography (HPLC) method was developed to simultaneously determine the following six active components in QHYRF: danshensu, paeoniflorin, acteoside, lithospermic acid, salvianolic acid B, and salvianolic acid C. These HPLC chromatograms were monitored at 254, 280, and 320 nm. The method was well validated with respect to specificity, linearity, limit of detection, limit of quantification, precision, stability, and recovery. The HPLC-UV method was successfully applied to 10 batches of QHYRF.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bui Van Hoi ◽  
Cam-Tu Vu ◽  
Lan-Anh Phung-Thi ◽  
Thao Thi Nguyen ◽  
Phuong Thanh Nguyen ◽  
...  

In this study, an analytical method for the simultaneous determination of 7 major pharmaceutical residues in Vietnam, namely, carbamazepine, ciprofloxacin, ofloxacin, ketoprofen, paracetamol, sulfamethoxazole, and trimethoprim, in surface water and hospital wastewater has been developed. The method includes enrichment and clean-up steps by solid phase extraction using mix-mode cation exchange, followed by identification and quantification using an ultrahigh-performance liquid chromatography and tandem mass spectrometry and employing electrospray ionization (UPLC-ESI-MS/MS). Seven target compounds were separated on the reversed phase column and detected in multiple reaction monitoring (MRM) mode within 6 minutes. The present study also optimized the operating parameters of the mass spectrometer to achieve the highest analytical signals for all target compounds. All characteristic parameters of the analytical method were investigated, including linearity range, limit of detection, limit of quantification, precision, and accuracy. The important parameter in UPLC-ESI-MS/MS, matrix effect, was assessed and implemented via preextraction and postextraction spiking experiments. The overall recoveries of all target compounds were in the ranges from 55% to 109% and 56 % to 115% for surface water and hospital wastewater, respectively. Detection limits for surface water and hospital wastewater were 0.005–0.015 µg L−1 and 0.014–0.123 µg L−1, respectively. The sensitivity of the developed method was allowed for determination of target compounds at trace level in environmental water samples. The in-house validation of the developed method was performed by spiking experiment in both the surface water and hospital wastewater matrix. The method was then applied to analyze several surface water and hospital wastewater samples taken from West Lake and some hospitals in Vietnam, where the level of these pharmaceutical product residues was still missed. Sulfamethoxazole was present at a high detection frequency in both surface water (33% of analyzed samples) and hospital wastewater (81% of analyzed samples) samples.


2020 ◽  
Vol 44 (8) ◽  
pp. 896-904
Author(s):  
Lihong Lyu ◽  
Rui Chen ◽  
Lu Li ◽  
Hongbin Duan ◽  
Yao Chen ◽  
...  

Abstract Fentanyl and its analogues are highly abused drugs that dominate the illicit drug trade. alpha-Methylfentanyl (A-F) and beta-hydroxyfentanyl (B-F) are two fentanyl analogues that require the development of rapid detection technologies. The current study established and validated a rapid and high-sensitivity liquid chromatography–tandem mass spectrometry (LC–MS-MS) method to measure A-F and B-F concentrations in rat plasma following intravenous drug administration (20 μg/kg). Because fentanyl is primarily metabolized by the liver, we evaluated the concentrations of A-F and B-F in vivo in rats, in a control group and a group with liver damage induced by 55 days of oral ethanol gavage (6.5 g/kg, 22.5% v/v). Liquid–liquid extraction and LC–MS-MS operating in the positive ion multiple reaction monitoring mode were used. A C18 column was used, and the mobile phase consisted of 0.1% formic acid aqueous and acetonitrile. The limit of detection was 3 pg/mL (S/N > 5) for A-F and B-F. The calibration curves were linear within the concentration range of 0.01–5 ng/mL (R2 = 0.9991) and 0.005–20 ng/mL (R2 = 0.9999) for A-F and B-F, respectively. Extraction recoveries were 91.3%–97.6% with RSD ≤ 11.2% and 90.5%–94.3% with RSD ≤ 10.5% for A-F and B-F, respectively. Plasma matrix effects were 80.61%–84.58% for A-F and 80.67%–81.33% for B-F with RSD ≤ 13.9%. The validated assay indicated no significant differences in pharmacokinetic parameters (AUC0-t, Cmax and T1/2) derived from the assessment of A-F and B-F plasma concentrations between control and ethanol-exposed rats. This assay, for which the LOD was 3 pg/mL for A-F and B-F may help the forensic science field to determine fentanyl analogue-related causes of death and identify illicit drug tampering.


1985 ◽  
Vol 31 (3) ◽  
pp. 391-396 ◽  
Author(s):  
P M Laidler ◽  
K W Ryder ◽  
M R Glick ◽  
T O Oei ◽  
R L Van Etten

Abstract Purified arylsulfatase A (EC 3.1.6.1) from human urine was radioiodinated under conditions that caused no significant loss of antigenic activity. We used this labeled arylsulfatase A (specific radioactivity 4-7.5 Ci/g) together with nonlabeled enzyme and rabbit antiserum produced against homogeneous enzyme to develop a radioimmunoassay for arylsulfatase A in urine. A solid-phase, second-antibody technique (Immunobead Second Antibody; Bio-Rad Laboratories) was used to separate free enzyme from antigen-antibody complexes. The working range of the assay was 0.1-4.0 ng of enzyme; within- and between-assay CVs were around 10%, and the analytical recovery was 105.5% (SD 7.7%). The lower limit of detection was 0.08 ng of arysulfatase A per assay, substantially less than that of typical activity-based assays. Over a wide range of urinary arylsulfatase A activities, results by this method agreed well (r = 0.99) with those obtained by activity assays. We measured the enzyme in urines of 59 healthy volunteers and 92 patients with different diseases, including a group of colorectal cancer cases, to determine whether this could serve as a reliable marker for cancer of the colon; however, urinary excretion of arylsulfatase A by most patients with colon cancer was within normal limits.


2013 ◽  
Vol 469 ◽  
pp. 444-449
Author(s):  
Yu Zi Liu ◽  
Ying Hao Xing ◽  
Jun Wu

In this study, High Performance Liquid Chromatography (HPLC), combined with Triple Quadruple mass Spectrometry (QQQ) were developed and applied in the analysis of 16 phthalic acid esters (PAEs) in the common drinking water. Qualitative and quantitative analysis were carried out by Multiple Reaction Monitoring (MRM). The method, combined with Solid Phase Extraction, was established to detect the PAEs in drinking water. As showed by the results, 16 PAEs had a good linearity in the range of 1.14~101.4μg/L, with correlation coefficient between 0.996~0.999. The mean recoveries were in the range of 87.53~131.37%, with the relative standard deviation be 0.71~5.09%. The limit of quantification (LOQ) of 16 PAEs were between 1.14~32.51μg/L, with the limit of detection (LOD) be 0.34~10.67μg/L. There were five PAEs which were detected in the range of <1.7~17.2μg/L in bottled water. Some products have some PAEs which havent been shown in the national or the international standard of the drinking water.


Author(s):  
K. M. Shestakova ◽  
G. A. Dudko ◽  
M. A. Dikunets

In the present study, a rapid, sensitive, and selective method for determination of several synthetic analogues of gonadotropin-releasing hormone in human urine by solid-phase extraction and ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was developed. Various parameters affecting sample preparation, LC separation, and MS/MS detection were investigated, and optimized conditions were identified. The UPLC-MS/MS system was equipped with an electrospray ion source operating in positive ion mode with selected reaction monitoring. Leuprolide-13С6 was used as internal standard for analytes quantitative assessment. The proposed method was validated considering the parameters specificity, linearity (0.1-10 ng/ml), recovery (52-98%), limit of detection (0.1 ng/ml), matrix effects and stability.


Sign in / Sign up

Export Citation Format

Share Document