scholarly journals Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents

2021 ◽  
Vol 15 (1) ◽  
pp. 35
Author(s):  
Prisca Lagardère ◽  
Cyril Fersing ◽  
Nicolas Masurier ◽  
Vincent Lisowski

Thienopyrimidines are widely represented in the literature, mainly due to their structural relationship with purine base such as adenine and guanine. This current review presents three isomers—thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and thieno[3,4-d]pyrimidines—and their anti-infective properties. Broad-spectrum thienopyrimidines with biological properties such as antibacterial, antifungal, antiparasitic and antiviral inspired us to analyze and compile their structure–activity relationship (SAR) and classify their synthetic pathways. This review explains the main access route to synthesize thienopyrimidines from thiophene derivatives or from pyrimidine analogs. In addition, SAR study and promising anti-infective activity of these scaffolds are summarized in figures and explanatory diagrams. Ligand–receptor interactions were modeled when the biological target was identified and the crystal structure was solved.

2020 ◽  
Vol 21 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Bruno Casciaro ◽  
Francesca Ghirga ◽  
Deborah Quaglio ◽  
Maria Luisa Mangoni

Cationic antimicrobial peptides (AMPs) are an interesting class of gene-encoded molecules endowed with a broad-spectrum of anti-infective activity and immunomodulatory properties. They represent promising candidates for the development of new antibiotics, mainly due to their membraneperturbing mechanism of action that very rarely induces microbial resistance. However, bringing AMPs into the clinical field is hampered by some intrinsic limitations, encompassing low peptide bioavailability at the target site and high peptide susceptibility to proteolytic degradation. In this regard, nanotechnologies represent an innovative strategy to circumvent these issues. According to the literature, a large variety of nanoparticulate systems have been employed for drug-delivery, bioimaging, biosensors or nanoantibiotics. The possibility of conjugating different types of molecules, including AMPs, to these systems, allows the production of nanoformulations able to enhance the biological profile of the compound while reducing its cytotoxicity and prolonging its residence time. In this minireview, inorganic gold nanoparticles (NPs) and biodegradable polymeric NPs made of poly(lactide-coglycolide) are described with particular emphasis on examples of the conjugation of AMPs to them, to highlight the great potential of such nanoformulations as alternative antimicrobials.


Author(s):  
Maryam Aisyah Abdullah ◽  
Siti Munirah Mohd Faudzi ◽  
Nadiah Mad Nasir

Abstract:: Medicinal chemists have continuously shown interest in new curcuminoid derivatives, the diarylpentadienones, owing to their enhanced stability feature and easy preparation using a one-pot synthesis. Thus far, methods such as Claisen-Schmidt condensation and Julia-Kocienski olefination have been utilised for the synthesis of these compounds. Diarylpentadienones possess a high potential as a chemical source for designing and developing new and effective drugs for the treatment of diseases, including inflammation, cancer, and malaria. In brief, this review article focuses on the broad pharmacological applications and the summary of the structure-activity relationship of molecules which can be employed to further explore the structure of diarylpentadienone. The current methodological developments towards the synthesis of diarylpentadienones are also discussed.


2019 ◽  
Vol 19 (17) ◽  
pp. 1392-1406
Author(s):  
Suvarna G. Kini ◽  
Ekta Rathi ◽  
Avinash Kumar ◽  
Varadaraj Bhat

Diphenyl ethers (DPE) and its analogs have exhibited excellent potential for therapeutic and industrial applications. Since the 19th century, intensive research is perpetuating on the synthetic routes and biological properties of DPEs. Few well-known DPEs are Nimesulide, Fenclofenac, Triclosan, Sorafenib, MK-4965, and MK-1439 which have shown the potential of this moiety as a lead scaffold for different pharmacological properties. In this review, we recapitulate the diverse synthetic route of DPE moiety inclusive of merits and demerits over the classical synthetic route and how this moiety sparked an interest in researchers to discern the SAR (Structure Activity Relationship) for the development of diversified biological properties of DPEs such as antimicrobial, antifungal, antiinflammatory & antiviral activities.


2020 ◽  
Vol 20 (10) ◽  
pp. 908-920 ◽  
Author(s):  
Su-Min Wu ◽  
Xiao-Yang Qiu ◽  
Shu-Juan Liu ◽  
Juan Sun

Inhibitors of monoamine oxidase (MAO) have shown therapeutic values in a variety of neurodegenerative diseases such as depression, Parkinson’s disease and Alzheimer’s disease. Heterocyclic compounds exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel single heterocyclic derivatives with MAO inhibitory activities during the past decade. This review covers recent pharmacological advancements of single heterocyclic moiety along with structure- activity relationship to provide better correlation among different structures and their receptor interactions.


2019 ◽  
Vol 16 (10) ◽  
pp. 807-817 ◽  
Author(s):  
Shilpy Aggarwal ◽  
Deepika Paliwal ◽  
Dhirender Kaushik ◽  
Girish Kumar Gupta ◽  
Ajay Kumar

The synthesis of a novel series of 1,3,5-trisubstitiuted pyrazoline was achieved by refluxing chalcone derivative with different heteroaryl hydrazines. The newly synthesized compounds were characterized by 1H NMR, 13CNMR, mass spectral and elemental analysis data. The synthetic series of novel pyrazoline hybrids was screened for in vitro schizont maturation assay against chloroquine sensitive 3D7 strain of Plasmodium falciparum. Most of the compounds showed promising in vitro antimalarial activity against CQ sensitive strain. The preliminary structure-activity relationship study showed that quinoline substituted analog at position N-1 showed maximum activity followed by benzothiazole substitution, while phenyl substitution lowers the antimalarial activity. The observed activity was persistent by the docking study on P. falciparum cystein protease falcipain-2. The pharmacokinetic properties were also studied using ADME prediction.


Inorganics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 128 ◽  
Author(s):  
Giglio ◽  
Rey

Technetium-99m has a rich coordination chemistry that offers many possibilities in terms of oxidation states and donor atom sets. Modifications in the structure of the technetium complexes could be very useful for fine tuning the physicochemical and biological properties of potential 99mTc radiopharmaceuticals. However, systematic study of the influence of the labelling strategy on the “in vitro” and “in vivo” behaviour is necessary for a rational design of radiopharmaceuticals. Herein we present a review of the influence of the Tc complexes’ molecular structure on the biodistribution and the interaction with the biological target of potential nitroimidazolic hypoxia imaging radiopharmaceuticals presented in the literature from 2010 to the present. Comparison with the gold standard [18F]Fluoromisonidazole (FMISO) is also presented.


2021 ◽  
Vol 14 (5) ◽  
pp. 428
Author(s):  
Douglas Kemboi Magozwi ◽  
Mmabatho Dinala ◽  
Nthabiseng Mokwana ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
...  

Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure–activity relationship of Euphorbia flavonoids for the period covering 2000–2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure–activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2632
Author(s):  
Henrique Silvano Arruda ◽  
Eric Keven Silva ◽  
Nayara Macêdo Peixoto Araujo ◽  
Gustavo Araujo Pereira ◽  
Glaucia Maria Pastore ◽  
...  

Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins’ applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.


Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald J. Nair ◽  
Johannes van Staden

AbstractOver 600 alkaloids have to date been identified in the plant family Amaryllidaceae. These have been arranged into as many as 15 different groups based on their characteristic structural features. The vast majority of studies on the biological properties of Amaryllidaceae alkaloids have probed their anticancer potential. While most efforts have focused on the major alkaloid groups, the volume and diversity afforded by the minor alkaloid groups have promoted their usefulness as targets for cancer cell line screening purposes. This survey is an in-depth review of such activities described for around 90 representatives from 10 minor alkaloid groups of the Amaryllidaceae. These have been evaluated against over 60 cell lines categorized into 18 different types of cancer. The montanine and cripowellin groups were identified as the most potent, with some in the latter demonstrating low nanomolar level antiproliferative activities. Despite their challenging molecular architectures, the minor alkaloid groups have allowed for facile adjustments to be made to their structures, thereby altering the size, geometry, and electronics of the targets available for structure-activity relationship studies. Nevertheless, it was seen with a regular frequency that the parent alkaloids were better cytotoxic agents than the corresponding semisynthetic derivatives. There has also been significant interest in how the minor alkaloid groups manifest their effects in cancer cells. Among the various targets and pathways in which they were seen to mediate, their ability to induce apoptosis in cancer cells is most appealing.


2019 ◽  
Vol 31 (12) ◽  
pp. 2740-2744
Author(s):  
Anil Verma ◽  
Vinod Kumar ◽  
Ramesh Kataria ◽  
Joginder Singh

Eleven acetohydrazide linked pyrazole derivatives were designed and synthesized via condensation of acetohyadrazide with different substituted formyl pyrazole derivatives under mild reaction conditions. Synthesized compounds were characterized on the basis of IR, NMR (1H & 13C) and mass spectrometry. The antimicrobial activities of all the compounds were screened against four bacterial and two fungal strains. Among the synthesized compounds, three compounds viz. 6b, 6c and 6d were found as efficient antimicrobial agents in reference to the standard drugs viz. ciprofloxacin and amphotericin-B. Further, structure-activity relationship (SAR) study revealed that electron-withdrawing group enhances the antimicrobial potential of synthesized derivatives as compared to other groups present in the ring. Hence, among compounds 6b-c, compound 6d could be explored further against other microbes to prove its vitality.


Sign in / Sign up

Export Citation Format

Share Document