scholarly journals Comparative Study on Excretive Characterization of Main Components in Herb Pair Notoginseng-Safflower and Single Herbs by LC–MS/MS

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 241 ◽  
Author(s):  
Ying-Yuan Lu ◽  
Jin-Yang Song ◽  
Yan Li ◽  
Yu-Qing Meng ◽  
Ming-Bo Zhao ◽  
...  

The herbal medicine combination of notoginseng-safflower has been commonly used clinically for the prevention and treatment of cardiovascular diseases. A reliable liquid chromatography-tandem mass spectrometry (LC–MS/MS) method was developed for simultaneous determination of six bioactive components (hydroxysafflor yellow A, notoginsenoide R1, ginsenoside Rb1, Re, Rd, and Rg1) in rat urine and feces after oral administration of notoginseng total saponins (NS), safflower total flavonoids (SF), and the combination of NS and SF (CNS). The chromatographic separation was achieved on a Waters HSS T3 column under gradient elution with acetonitrile and water containing formic acid as the mobile phase. The calibration curves were linear, with correlation coefficient (r) > 0.99 for six components. The intra- and interday precision (RSD) and accuracy (RE) of QC samples were within −14.9% and 14.9%, respectively. The method was successfully applied to study of the urinary and fecal excretion of six bioactive constituents following oral administration of NS, SF, and CNS in rats. Compared to the single herb, the cumulative excretion ratios of six constituents were decreased in the herbal combination. The study indicated that the combination of notoginseng and safflower could reduce the renal and fecal excretion of the major bioactive constituents and promote their absorption in rats.

2020 ◽  
Vol 58 (10) ◽  
pp. 922-928
Author(s):  
Jing Zhang ◽  
Quan Wen ◽  
Meng-ying Zhou ◽  
Chen-cong Zhong ◽  
Yulin Feng ◽  
...  

Abstract Chimonanthi Radix (CR) is widely used in the treatment of influenza in China. Extensive studies revealed that the major bioactive constituents of CR were coumarins. However, pharmacokinetic study of coumarins in CR has not been fully studied. The purpose of this study was to establish a convenient and effective high-performance liquid chromatography–tandem mass spectrometry method that was used to simultaneously determine scopoletin, scopolin and isofraxidin in rat plasma after oral administration of CR extract using xanthotoxin as the internal standard. The chromatographic separation was carried out on a COSMOCORE C18 column (100 × 2 mm, 2.6 μm), using gradient elution with the mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). Three coumarins and IS were quantified by positive ion electrospray ionization in multiple reaction monitoring mode. The method was fully validated in terms of specificity, accuracy, precision (intra- and inter-day), matrix effect, recovery as well as the stability of the analytes under various conditions. The results could provide further research foundation for anti-influenza mechanism of three coumarins in CR.


2019 ◽  
Vol 15 (2) ◽  
pp. 121-129
Author(s):  
Zhi Rao ◽  
Bo-xia Li ◽  
Yong-Wen Jin ◽  
Wen-Kou ◽  
Yan-rong Ma ◽  
...  

Background: Imatinib (IM) is a chemotherapy medication metabolized by CYP3A4 to Ndesmethyl imatinib (NDI), which shows similar pharmacologic activity to the parent drug. Although methods for determination of IM and/or NDI have been developed extensively, only few observations have been addressed to simultaneously determine IM and NDI in biological tissues such as liver, kidney, heart, brain and bone marrow. Methods: A validated LC-MS/MS method was developed for the quantitative determination of imatinib (IM) and N-desmethyl imatinib (NDI) from rat plasma, bone marrow, brain, heart, liver and kidney. The plasma samples were prepared by protein precipitation, and then the separation of the analytes was achieved using an Agilent Zorbax Eclipse Plus C18 column (4.6 × 100 mm, 3.5 µm) with gradient elution running water (A) and methanol (B). Mass spectrometric detection was achieved by a triplequadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Results: This method was used to investigate the pharmacokinetics and the tissue distributions in rats following oral administration of 25 mg/kg of IM. The pharmacokinetic profiles suggested that IM and NDI are disappeared faster in rats than human, and the tissue distribution results showed that IM and NDI had good tissue penetration and distribution, except for the brain. This is the first report about the large penetrations of IM and NDI in rat bone marrow. Conclusion: The method demonstrated good sensitivity, accuracy, precision and recovery in assays of IM and NDI in rats. The described assay was successfully applied for the evaluation of pharmacokinetics and distribution in the brain, heart, liver, kidney and bone marrow of IM and NDI after a single oral administration of IM to rats.


2020 ◽  
Vol 32 (7) ◽  
pp. 1733-1740
Author(s):  
K. Durga Raja ◽  
V. Saradhi Venkata Ramana ◽  
K. Raghu Babu ◽  
B. Kishore Babu ◽  
V. Jagadeesh Kumar ◽  
...  

The objective of this work was to develop and validate a rapid, highly sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) method for the quantification of 2-isopropyl-4-(chloromethyl)thiazole in ritonavir. Chromatographic conditions of this impurity were achieved on an AQUITY UPLC column HSS (high strength silica) T3 column (100 mm long, 2.1 mm internal diameter, 1.8 μm diameter) using a gradient elution with 0.1% formic acid in water and methanol at a flow rate of 0.3 mL/min. LCMS/MS was operated under the multiple reaction mode (MRM) using electrospray ionization technique in positive ion mode and the transitions of m/z 176.1[M+H]+→140.1 for quantifier, 176.1[M+H]+→71.0 for qualifier were used to measure the impurity, respectively. The total chromatographic run time was 10 min. Full validation of the analytical method was carried out, including its system precision, selectivity, linearity, accuracy, recovery, ruggedness, stability and robustness. A linear response function was achieved in the concentration range of 0.12-1.86 μg/g with r > 0.99. The detection limit and quantitation limit of this impurity were 0.06 and 0.12 μg/g, respectively. Consistent recoveries were obtained during intra- and inter-day precision experiments in validation ranged from 80-120%. The developed method could be helpful not only for quality control and also for risk management of potential genotoxicity of this impurity in ritonavir drug substance.


2014 ◽  
Vol 58 (4) ◽  
pp. 573-579 ◽  
Author(s):  
Anna Gajda ◽  
Andrzej Posyniak ◽  
Grzegorz Tomczyk

Abstract For the purpose of quantitative determination of doxycycline (DC) residues in tissues, a sensitive liquid chromatography - tandem mass spectrometry (LC-MS/MS) method was developed. The method was used to determine DC residues in chicken tissues (breast and thigh muscle, liver and kidney) after oral administration with drinking water to five-weak-old broiler chickens. The DC was administered for five consecutive days at a therapeutic dose of 10 mg/kg b.w. once a day. The tissues were collected after 6 h, 24 h, 7 d, and 8 d. The method was validated and the decision limit was established for muscle - 109.2 μg/kg, for liver - 326.1 μg/kg, and for kidney - 634.0 μg/kg. The detection limit was 2 μg/kg and the limit of quantification was 5 μg/kg. In a short period after ceasing the treatment, the detected concentrations of DC were much higher than the established maximum residue limit values. The highest residue concentrations of DC were observed in the kidney, followed by the liver and muscle. The lowest concentration of DC was determined in tight muscle.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhen Li ◽  
Yang Li ◽  
Jin Li ◽  
Rui Liu ◽  
Jia Hao ◽  
...  

A sensitive and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine the toxic and other active components including isovanillin, scopoletin, periplocin, periplogenin, and periplocymarin after oral administration of cortex periplocae extract to rats. Plasma samples were prepared by protein precipitation with methanol. All compounds were separated on a C18 column with gradient elution using acetonitrile and formic acid aqueous solution (0.1%, v/v) as the mobile phase at a flow rate of 0.3 mL/min. The detection of all compounds was accomplished by multiple-reaction monitoring (MRM) in the positive electrospray ionization mode. The LC-MS/MS method exhibited good linearity for five analytes. The lower limit of quantification (LLOQ) was 0.48 ng/mL for scopoletin, periplogenin, and periplocymarin; 2.4 ng/mL for isovanillin and periplocin. The extraction recoveries of all compounds were more than 90% and the RSDs were below 10%. It was found that the absorption of scopoletin and periplocin was rapid in vivo after oral administration of cortex periplocae extract. Furthermore, periplocymarin possessed abundant plasma exposure. The results demonstrated that the validated method was efficiently applied for the pharmacokinetic studies of isovanillin, scopoletin, periplocin, periplogenin, and periplocymarin after oral administration of cortex periplocae extract.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 694
Author(s):  
Jin-Long Tian ◽  
Chi Shu ◽  
Ye Zhang ◽  
Hui-Jun Cui ◽  
Xu Xie ◽  
...  

Clerodane diterpenoids are the main bioactive constituents of Croton crassifolius and are proved to have multiple biological activities. However, quality control (QC) research on the constituents are rare. Thus, the major research purpose of the current study was to establish an efficient homogenate extraction (HGE) process combined with a sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC–MS) technique together for the rapid extraction and determination of clerodane diterpenoids in C. crassifolius. All calibration curves showed good linearity (r > 0.9943) within the test ranges and the intra- and inter-day precisions and repeatability were all within required limits. This modified HGE–UHPLC–MS method only took 5 min to extract nine clerodane diterpenoids in C. crassifolius and another 12 min to quantify these components. The results indicated that the quantitative analysis based on UHPLC–MS was a feasible method for QC of clerodane diterpenoids in C. crassifolius, and the findings outlined in the current study also inferred the potential of the method in the QC of clerodane diterpenoids in other complex species of plants.


Sign in / Sign up

Export Citation Format

Share Document