scholarly journals Inhalable Jojoba Oil Dry Nanoemulsion Powders for the Treatment of Lipopolysaccharide- or H2O2-Induced Acute Lung Injury

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 486
Author(s):  
Guoli Zhang ◽  
Fei Xie ◽  
Yunbo Sun ◽  
Xiang Yu ◽  
Zhimei Xiao ◽  
...  

Jojoba (Simmondsia chinensis (Link) C.K. Schneid) is a dioecious plant in desert and semi-desert areas, e.g., the Ismailia Desert in Egypt. Jojoba oil (JJBO) is a natural slight yellow oil with the functions of skin barrier repairing and wound healing, which is dermally applied as a traditional medication or cosmetic in the Middle East. The objective of this study was to prepare JJBO dry nanoemulsion powders (JNDs) and investigate their anti-acute lung injury effects. JJBO nanoemulsions (JNEs) were prepared and then lyophilized to JNDs and the properties and simulated lung deposition were measured. Rat acute lung injury (ALI) models were established after intratracheal (i.t.) administration of lipopolysaccharide (LPS) or hydrogen peroxide (H2O2). JNDs and dexamethasone (DXM) solutions were also i.t. administered to the rats. The pathological states of lung tissues were checked. Inflammatory and oxidative factors in the lung tissues were determined using ELISA methods. NF-κB p65 and caspase-3 were measured with a Western blotting method and an immunohistochemical method, respectively. JNDs had an appropriate mass median aerodynamic diameter (MMAD) of 4.17 µm and a fine particle fraction (FPF) of 39.11%. JNDs showed higher anti-inflammatory effect on LPS-induced ALI than DXM with a decrease in total protein content and down-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and NF-κB p65. JNDs also showed higher anti-inflammatory and anti-oxidation effect on H2O2-induced ALI than DXM with elimination of reactive oxygen species (ROS), increasing of superoxide dismutase (SOD), decrease in of lipid peroxide malondialdehyde (MDA) and glutathione (GSH), and inhibition of caspase-3 expression. Moreover, i.t. JNDs attenuated bleeding and infiltrations of the inflammatory cells in the two ALI models. JNDs are a promising natural oil-contained inhalable medication for the treatment of LPS- or H2O2-induced ALI.

2016 ◽  
pp. S663-S672 ◽  
Author(s):  
P. KOSUTOVA ◽  
P. MIKOLKA ◽  
S. BALENTOVA ◽  
M. ADAMKOV ◽  
M. KOLOMAZNIK ◽  
...  

Acute lung injury (ALI) is characterized by diffuse alveolar damage, inflammation, and transmigration and activation of inflammatory cells. This study evaluated if intravenous dexamethasone can influence lung inflammation and apoptosis in lavage-induced ALI. ALI was induced in rabbits by repetitive saline lung lavage (30 ml/kg, 9±3-times). Animals were divided into 3 groups: ALI without therapy (ALI), ALI treated with dexamethasone i.v. (0.5 mg/kg, Dexamed; ALI+DEX), and healthy non-ventilated controls (Control). After following 5 h of ventilation, ALI animals were overdosed by anesthetics. Total and differential counts of cells in bronchoalveolar lavage fluid (BAL) were estimated. Lung edema was expressed as wet/dry weight ratio. Concentrations of IL-1ß, IL-8, esRAGE, S1PR3 in the lung were analyzed by ELISA methods. In right lung, apoptotic cells were evaluated by TUNEL assay and caspase-3 immunohistochemically. Dexamethasone showed a trend to improve lung functions and histopathological changes, reduced leak of neutrophils (P<0.001) into the lung, decreased concentrations of pro-inflammatory IL-1β (P<0.05) and marker of lung injury esRAGE (P<0.05), lung edema formation (P<0.05), and lung apoptotic index (P<0.01), but increased immunoreactivity of caspase-3 in the lung (P<0.001). Considering the action of dexamethasone on respiratory parameters and lung injury, the results indicate potential of this therapy in ALI.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Aijun Sun ◽  
Weiheng Wang ◽  
Xiaojian Ye ◽  
Yang Wang ◽  
Xiangqun Yang ◽  
...  

Objective. The aim of this research is to evaluate the protective effects of methane-rich saline (MS) on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) and investigate its potential antioxidative, anti-inflammatory, and antiapoptotic activities. Methods. LPS-induced (20 mg/kg) ALI rats were injected with MS (2 ml/kg and 20 ml/kg) before the initiation of LPS induction. Survival rate was determined until 96 h after LPS was induced. Lung injury was assayed by oxygenation index, lung permeability index (LPI), wet-to-dry weight (W/D), and histology. The cells in the bronchoalveolar lavage fluid (BALF) were counted. Oxidative stress was examined by the level of malondialdehyde (MDA) and superoxide dismutase (SOD). Inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in BALF were determined by ELISA. Lung tissue apoptosis was detected by TUNEL staining and western blotting of caspase-3. Results. It was found that methane significantly prolonged the rat survival, decreased the lung W/D ratio and the content of the inflammatory factors, and reduced the amount of caspase-3 and apoptotic index. In addition, MS increased the level of SOD and decreased the level of MDA significantly. Conclusions. MS protects the LPS-challenged ALI via antioxidative, anti-inflammatory, and antiapoptotic effect, which may prove to be a novel therapy for the clinical management of ALI.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1620
Author(s):  
Hossam M. Abdallah ◽  
Dina S. El-Agamy ◽  
Sabrin R. M. Ibrahim ◽  
Gamal A. Mohamed ◽  
Wael M. Elsaed ◽  
...  

Euphorbia cuneata (EC; Euphorbiaceae), which widely grows in Saudi Arabia and Yemen, is used traditionally to treat pain and inflammation. This study aimed to evaluate the protective anti-inflammatory effect of a standardized extract of EC against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanism(s) of this pharmacologic activity. ALI was induced in male Balb/c mice using intraperitoneal injection of LPS. A standardized total methanol extract of EC or dexamethasone was administered 5 days prior to LPS challenge. Bronchoalveolar fluid (BALF) and lung samples were collected for analysis. The results demonstrated the protective anti-inflammatory effect of EC against LPS-induced ALI in mice. Standardized EC contained 2R-naringenin-7-O-β-glucoside (1), kaempferol-7-O-β-glucoside (2), cuneatannin (3), quercetin (4), and 2R-naringenin (5) in concentrations of 6.16, 4.80, 51.05, 13.20, and 50.00 mg/g of extract, respectively. EC showed a protective effect against LPS-induced pulmonary damage. EC reduced lung wet/dry weight (W/D) ratio and total protein content in BALF, indicating attenuation of the pulmonary edema. Total and differential cell counts were decreased in EC-treated animals. Histopathological examination confirmed the protective effect of EC, as indicated by an amelioration of LPS-induced lesions in lung tissue. EC also showed a potent anti-oxidative property as it decreased lipid peroxidation and increased the antioxidants in lung tissue. Finally, the anti-inflammatory activity of EC was obvious through its ability to suppress the activation of nuclear factor-κB (NF-κB), and hence its reduction of the levels of downstream inflammatory mediators. In conclusion, these results demonstrate the protective effects of EC against LPS-induced lung injury in mice, which may be due to its antioxidative and anti-inflammatory activities.


Author(s):  
Niloofar Honari ◽  
Parastoo Shaban ◽  
Saeed Nasseri ◽  
Mehran Hosseini

Abstract Objectives Acute lung injury (ALI) is a life-threatening pulmonary dysfunction associated with severe inflammation. There are still no effective pharmacological therapies for the treatment of ALI. In this concern, several anti-inflammatory agents could be used as add-on therapy to inhibit inflammation. Achillea wilhelmsii (AW) C. Koch is a well-known medicinal plant in the Iranian ethnomedical practices with anti-inflammatory activity. This study was aimed to evaluate the efficacy of ethanolic extract of AW on lipopolysaccharide (LPS)-induced ALI in mice. Methods The ALI model was established via the intra-tracheal (i.t.) administration of LPS (2 mg/kg) to male BALB/c mice. The ALI mice were divided into four groups (n=8 each) which intra-peritoneally (i.p.) treated with repeated doses of saline (model), dexamethasone (2 mg/kg), and AW (150–300 mg/kg) 1, 11 and 23 h post LPS administration. Twenty-four hours after the LPS challenge, bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cell influx, level of tumor necrosis factor-α (TNF-α) and histopathological changes. Results The AW (150–300 mg/kg) treated mice showed lower inflammatory cells infiltration in BALF and TNF-α level when compared to the model group. In addition, LPS induced several pathological alterations such as edema, alveolar hemorrhage and inflammatory cell infiltration into the interstitium and alveolar spaces. Treatment with AW significantly reduced LPS-induced pathological injury. Conclusions Taken together, the data here indicated that AW may be considered as a promising add-on therapy for ALI.


2021 ◽  
Vol 8 (1) ◽  
pp. e000879
Author(s):  
Premila Devi Leiphrakpam ◽  
Hannah R Weber ◽  
Tobi Ogun ◽  
Keely L Buesing

BackgroundAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a lethal disease with limited therapeutic options and an unacceptably high mortality rate. Understanding the complex pathophysiological processes involved in the development of ALI/ARDS is critical for developing novel therapeutic strategies. Smoke inhalation (SI) injury is the leading cause of morbidity and mortality in patients with burn-associated ALI/ARDS; however, to our knowledge few reliable, reproducible models are available for pure SI animal model to investigate therapeutic options for ALI/ARDS without the confounding variables introduced by cutaneous burn or other pathology.ObjectiveTo develop a small animal model of pure SI-induced ALI and to use this model for eventual testing of novel therapeutics for ALI.MethodsRats were exposed to smoke using a custom-made smoke generator. Peripheral oxygen saturation (SpO2), heart rate, arterial blood gas, and chest X-ray (CXR) were measured before and after SI. Wet/dry weight (W/D) ratio, lung injury score and immunohistochemical staining of cleaved caspase 3 were performed on harvested lung tissues of healthy and SI animals.ResultsThe current study demonstrates the induction of ALI in rats after SI as reflected by a significant, sustained decrease in SpO2 and the development of diffuse bilateral pulmonary infiltrates on CXR. Lung tissue of animals exposed to SI showed increased inflammation, oedema and apoptosis as reflected by the increase in W/D ratio, injury score and cleaved caspase 3 level of the harvested tissues compared with healthy animals.ConclusionWe have successfully developed a small animal model of pure SI-induced ALI. This model is offered to the scientific community as a reliable model of isolated pulmonary SI-induced injury without the confounding variables of cutaneous injury or other systemic pathology to be used for study of novel therapeutics or other investigation.


2021 ◽  
Author(s):  
Irina N. Baranova ◽  
Alexander V. Bocharov ◽  
Tatyana G. Vishnyakova ◽  
Zhigang Chen ◽  
Anna A. Birukova ◽  
...  

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake, and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates understanding SR-BI’s role in endotoxemia/sepsis, calling for use of alternative models. In this study, using hSR-BI and hSR-BII transgenic mice, we found that SR-BI and to a lesser extent its splicing variant SR-BII, protects against LPS-induced lung damage. At 20 hours after intratracheal LPS instillation the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice compared to wild type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content as well as lung tissue neutrophil infiltration found in wild type mice was associated with markedly (2-3 times) increased pro-inflammatory cytokine production as compared to transgenic mice following LPS administration. Markedly lower endotoxin levels detected in BALF of transgenic vs. wild type mice along with the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 hours after the IT LPS injection suggest that hSR-BI and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


2021 ◽  
Vol 17 (73) ◽  
pp. 163
Author(s):  
Yi Zhu ◽  
Feng Wang ◽  
Jian Huang ◽  
Jun Li ◽  
Kang Chen ◽  
...  

2002 ◽  
Vol 283 (1) ◽  
pp. L1-L11 ◽  
Author(s):  
Margaret K. Winkler ◽  
John L. Fowlkes

Chronic lung disease due to interstitial fibrosis can be a consequence of acute lung injury and inflammation. The inflammatory response is mediated through the migration of inflammatory cells, actions of proinflammatory cytokines, and the secretion of matrix-degrading proteinases. After the initial inflammatory insult, successful healing of the lung may occur, or alternatively, dysregulated tissue repair can result in scarring and fibrosis. On the basis of recent insights into the mechanisms underlying acute lung injury and its long-term consequences, data suggest that proteinases, such as the matrix metalloproteinases (MMPs), may not only be involved in the breakdown and remodeling that occurs during the injury but may also cause the release of growth factors and cytokines known to influence growth and differentiation of target cells within the lung. Through the release of and activation of fibrosis-promoting cytokines and growth factors such as transforming growth factor-β1, tumor necrosis factor-α, and insulin-like growth factors by MMPs, we propose that these metalloproteinases may be integral to the initiation and progression of pulmonary fibrosis.


Sign in / Sign up

Export Citation Format

Share Document