scholarly journals Conceptualisation of an Efficient Particle-Based Simulation of a Twin-Screw Granulator

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2136
Author(s):  
John P. Morrissey ◽  
Kevin J. Hanley ◽  
Jin Y. Ooi

Discrete Element Method (DEM) simulations have the potential to provide particle-scale understanding of twin-screw granulators. This is difficult to obtain experimentally because of the closed, tightly confined geometry. An essential prerequisite for successful DEM modelling of a twin-screw granulator is making the simulations tractable, i.e., reducing the significant computational cost while retaining the key physics. Four methods are evaluated in this paper to achieve this goal: (i) develop reduced-scale periodic simulations to reduce the number of particles; (ii) further reduce this number by scaling particle sizes appropriately; (iii) adopt an adhesive, elasto-plastic contact model to capture the effect of the liquid binder rather than fluid coupling; (iv) identify the subset of model parameters that are influential for calibration. All DEM simulations considered a GEA ConsiGma™ 1 twin-screw granulator with a 60° rearward configuration for kneading elements. Periodic simulations yielded similar results to a full-scale simulation at significantly reduced computational cost. If the level of cohesion in the contact model is calibrated using laboratory testing, valid results can be obtained without fluid coupling. Friction between granules and the internal surfaces of the granulator is a very influential parameter because the response of this system is dominated by interactions with the geometry.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 207 ◽  
Author(s):  
Jens Wesholowski ◽  
Andreas Berghaus ◽  
Markus Thommes

Over recent years Twin-Screw-Extrusion (TSE) has been established as a platform technology for pharmaceutical manufacturing. Compared to other continuous operation, one of the major benefits of this method is the combination of several unit operations within one apparatus. Several of these are linked to the Residence Time Distribution (RTD), which is typically expressed by the residence time density function. One relevant aspect for pharmaceutical processes is the mixing capacity, which is represented by the width of this distribution. In the frame of this study the influence of the mass flow, the temperature and the screw-barrel clearance were investigated for a constant barrel load (specific feed load, SFL). While the total mass flow as well as the external screw diameter affected the mixing performance, the barrel temperature had no influence for the investigated range. The determined results were additionally evaluated with respect to a fit to the Twin-Dispersion-Model (TDM). This model is based on the superimposition of two mixing functions. The correlations between varied process parameters and the obtained characteristic model parameters proved this general physical view on extrusion.


Author(s):  
Willem Petersen ◽  
John McPhee

For the multibody simulation of planetary rover operations, a wheel-soil contact model is necessary to represent the forces and moments between the tire and the soft soil. A novel nonlinear contact modelling approach based on the properties of the hypervolume of interpenetration is validated in this paper. This normal contact force model is based on the Winkler foundation model with nonlinear spring properties. To fully define the proposed normal contact force model for this application, seven parameters are required. Besides the geometry parameters that can be easily measured, three soil parameters representing the hyperelastic and plastic properties of the soil have to be identified. Since it is very difficult to directly measure the latter set of soil parameters, they are identified by comparing computer simulations with experimental results of drawbar pull tests performed under different slip conditions on the Juno rover of the Canadian Space Agency (CSA). A multibody dynamics model of the Juno rover including the new wheel/soil interaction model was developed and simulated in MapleSim. To identify the wheel/soil contact model parameters, the cost function of the model residuals of the kinematic data is minimized. The volumetric contact model is then tested by using the identified contact model parameters in a forward dynamics simulation of the rover on an irregular 3-dimensional terrain and compared against experiments.


Author(s):  
Huayuan Feng ◽  
Subhash Rakheja ◽  
Wen-Bin Shangguan

The drive shaft system with a tripod joint is known to cause lateral vibration in a vehicle due to the axial force generated by various contact pairs of the tripod joint. The magnitude of the generated axial force, however, is related to various operating factors of the drive shaft system in a complex manner. The generated axial force due to a drive shaft system with a tripod joint and a ball joint was experimentally characterized considering ranges of operational factors, namely, the input toque, the shaft rotational speed, the articulation angle, and the friction. The data were analyzed to establish an understanding of the operational factors on the generated axial force. Owing to the observed significant effects of all the factors, a multibody dynamic model of the drive shaft system was formulated for predicting generated axial force under different operating conditions. The model integrated the roller–track contact model and the velocity-based friction model. Based on a quasi-static finite element model, a new methodology was proposed for identifying the roller–track contact model parameters, namely, the contact stiffness and force index. To further enhance the calculation accuracy of the multibody dynamic model, a new methodology for identifying the friction model parameters and the force index was proposed by using the measured data. The validity of the model was demonstrated by comparing the model-predicted and measured magnitudes of generated axial force for the ranges of operating factors considered. The results showed that the generated axial force of the drive shaft system can be calculated more accurately and effectively by using the identified friction and contact parameters in the paper.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10975
Author(s):  
Nicos Haralabidis ◽  
Gil Serrancolí ◽  
Steffi Colyer ◽  
Ian Bezodis ◽  
Aki Salo ◽  
...  

Biomechanical simulation and modelling approaches have the possibility to make a meaningful impact within applied sports settings, such as sprinting. However, for this to be realised, such approaches must first undergo a thorough quantitative evaluation against experimental data. We developed a musculoskeletal modelling and simulation framework for sprinting, with the objective to evaluate its ability to reproduce experimental kinematics and kinetics data for different sprinting phases. This was achieved by performing a series of data-tracking calibration (individual and simultaneous) and validation simulations, that also featured the generation of dynamically consistent simulated outputs and the determination of foot-ground contact model parameters. The simulated values from the calibration simulations were found to be in close agreement with the corresponding experimental data, particularly for the kinematics (average root mean squared differences (RMSDs) less than 1.0° and 0.2 cm for the rotational and translational kinematics, respectively) and ground reaction force (highest average percentage RMSD of 8.1%). Minimal differences in tracking performance were observed when concurrently determining the foot-ground contact model parameters from each of the individual or simultaneous calibration simulations. The validation simulation yielded results that were comparable (RMSDs less than 1.0° and 0.3 cm for the rotational and translational kinematics, respectively) to those obtained from the calibration simulations. This study demonstrated the suitability of the proposed framework for performing future predictive simulations of sprinting, and gives confidence in its use to assess the cause-effect relationships of technique modification in relation to performance. Furthermore, this is the first study to provide dynamically consistent three-dimensional muscle-driven simulations of sprinting across different phases.


Author(s):  
Hisham Elsafti ◽  
Hocine Oumeraci

In this study, the fully-coupled and fully-dynamic Biot governing equations in the open-source geotechFoam solver are extended to account for pore fluid viscous stresses. Additionally, turbulent pore fluid flow in deformable porous media is modeled by means of the conventional eddy viscosity concept without the need to resolve all turbulence scales. A new approach is presented to account for porous media resistance to flow (solid-to-fluid coupling) by means of an effective viscosity, which accounts for tortuosity, grain shape and local turbulences induced by flow through porous media. The new model is compared to an implemented extended Darcy-Forchheimer model in the Navier-Stokes equations, which accounts for laminar, transitional, turbulent and transient flow regimes. Further, to account for skeleton deformation, the porosity and other model parameters are updated with regard to strain of geomaterials. The presented model is calibrated by means of available results of physical experiments of unidirectional and oscillatory flows.


2008 ◽  
Vol 18 (04) ◽  
pp. 825-840
Author(s):  
TOUHIDUR RAHMAN ◽  
MOHAMMAD A. HUQUE ◽  
SYED K. ISLAM

In this paper, an efficient numerical model applicable for wide varieties of long channel field-effect transistors (MOSFET, MESFET, HEMT, etc.) is developed. A set of available data is used to calculate the model parameters and another set of data is used to verify the accuracy of the model. This model provides a single expression that is applicable for the entire range of device biasing and can predict the output parameters with less than 1% error compared to the experimental results. Lagrange polynomial, the highest degree of polynomial for any given set of data, is used to derive the model from available data. This method is efficient in the sense that it can be derived from a limited number of experimental data and since it uses only one equation for entire range of the device operation hence its computational cost is also small.


2018 ◽  
Vol 18 (13) ◽  
pp. 9975-10006 ◽  
Author(s):  
Leighton A. Regayre ◽  
Jill S. Johnson ◽  
Masaru Yoshioka ◽  
Kirsty J. Pringle ◽  
David M. H. Sexton ◽  
...  

Abstract. Changes in aerosols cause a change in net top-of-the-atmosphere (ToA) short-wave and long-wave radiative fluxes; rapid adjustments in clouds, water vapour and temperature; and an effective radiative forcing (ERF) of the planetary energy budget. The diverse sources of model uncertainty and the computational cost of running climate models make it difficult to isolate the main causes of aerosol ERF uncertainty and to understand how observations can be used to constrain it. We explore the aerosol ERF uncertainty by using fast model emulators to generate a very large set of aerosol–climate model variants that span the model uncertainty due to 27 parameters related to atmospheric and aerosol processes. Sensitivity analyses shows that the uncertainty in the ToA flux is dominated (around 80 %) by uncertainties in the physical atmosphere model, particularly parameters that affect cloud reflectivity. However, uncertainty in the change in ToA flux caused by aerosol emissions over the industrial period (the aerosol ERF) is controlled by a combination of uncertainties in aerosol (around 60 %) and physical atmosphere (around 40 %) parameters. Four atmospheric and aerosol parameters account for around 80 % of the uncertainty in short-wave ToA flux (mostly parameters that directly scale cloud reflectivity, cloud water content or cloud droplet concentrations), and these parameters also account for around 60 % of the aerosol ERF uncertainty. The common causes of uncertainty mean that constraining the modelled planetary brightness to tightly match satellite observations changes the lower 95 % credible aerosol ERF value from −2.65 to −2.37 W m−2. This suggests the strongest forcings (below around −2.4 W m−2) are inconsistent with observations. These results show that, regardless of the fact that the ToA flux is 2 orders of magnitude larger than the aerosol ERF, the observed flux can constrain the uncertainty in ERF because their values are connected by constrainable process parameters. The key to reducing the aerosol ERF uncertainty further will be to identify observations that can additionally constrain individual parameter ranges and/or combined parameter effects, which can be achieved through sensitivity analysis of perturbed parameter ensembles.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 630 ◽  
Author(s):  
Hui Qin ◽  
Xiongyao Xie ◽  
Yu Tang

Bayesian inversion of crosshole ground penetrating radar (GPR) data is capable of characterizing the subsurface dielectric properties and qualifying the associated uncertainties. Markov chain Monte Carlo (MCMC) simulations within the Bayesian inversion usually require thousands to millions of forward model evaluations for the parameters to hit their posterior distributions. Therefore, the CPU cost of the forward model is a key issue that influences the efficiency of the Bayesian inversion method. In this paper we implement a widely used straight-ray forward model within our Bayesian inversion framework. Based on a synthetic unit square relative permittivity model, we simulate the crosshole GPR first-arrival traveltime data using the finite-difference time-domain (FDTD) and straight-ray solver, respectively, and find that the straight-ray simulator runs 450 times faster than its FDTD counterpart, yet suffers from a modeling error that is more than 7 times larger. We also perform a series of numerical experiments to evaluate the performance of the straight-ray model within the Bayesian inversion framework. With modeling error disregarded, the inverted posterior models fit the measurement data nicely, yet converge to the wrong set of parameters at the expense of unreasonably large number of iterations. When the modeling error is accounted for, with a quarter of the computational burden, the main features of the true model can be identified from the posterior realizations although there still exist some unwanted artifacts. Finally, a smooth constraint on the model structure improves the inversion results considerably, to the extent that it enhances the inversion accuracy approximating to those of the FDTD model, and further reduces the CPU demand. Our results demonstrate that the use of the straight-ray forward model in the Bayesian inversion saves computational cost tremendously, and the modeling error correction together with the model structure constraint are the necessary amendments that ensure that the model parameters converge correctly.


2017 ◽  
Vol 24 (13) ◽  
pp. 2873-2893 ◽  
Author(s):  
Austin A Phoenix ◽  
Jeff Borggaard ◽  
Pablo A Tarazaga

As future space mission structures are required to achieve more with scarcer resources, new structural configurations and modeling capabilities will be needed to meet the next generation space structural challenges. A paradigm shift is required away from the current structures that are static, heavy, and stiff, to innovative lightweight structures that meet requirements by intelligently adapting to the environment. As the complexity of these intelligent structures increases, the computational cost of the modeling and optimization efforts become increasingly demanding. Novel methods that identify and reduce the number of parameters to only those most critical considerably reduce these complex problems, allowing highly iterative evaluations and in-depth optimization efforts to be computationally feasible. This parameter ranking methodology will be demonstrated on the optimization of the thermal morphing anisogrid boom. The proposed novel morphing structure provides high precision morphing through the use of thermal strain as the sole actuation mechanism. The morphing concept uses the helical members in the anisogrid structure to provide complex constrained actuations that can achieve the six degree of freedom morphing capability. This structure provides a unique potential to develop an integrated structural morphing system, where the adaptive morphing capability is integrated directly into the primary structure. To identify parameters of interest, the Q-DEIM model reduction algorithm is implemented to rank the model parameters based on their impact on the morphing performance. This parameter ranking method provides insight into the system and enables the optimal allocation of computational and engineering resources to the most critical areas of the system for optimization. The methodology, in conjunction with a singular value decomposition (SVD), provides a ranking and identifies parameters of relative importance. The SVD is used to truncate the nine parameters problem at two locations, generating a five parameter optimization problem and a three parameter optimization problem. To evaluate the ranking, a parameter sweep in conjunction with a simple minimum cost function search algorithm will compare all 120 five parameter ranking orders to the Q-DEIM ranking. This reduced parameter set significantly reduces the parameter complexity and the computational cost of the model optimization. This paper will present the methodology to define the resulting performance of the optimal thermal morphing anisogrid structure, minimum morphing control, and the systems frequency response capability as a function of available power.


2015 ◽  
Vol 8 (4) ◽  
pp. 1259-1273 ◽  
Author(s):  
J. Ray ◽  
J. Lee ◽  
V. Yadav ◽  
S. Lefantzi ◽  
A. M. Michalak ◽  
...  

Abstract. Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) and fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO2 (ffCO2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO2 emissions and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.


Sign in / Sign up

Export Citation Format

Share Document