scholarly journals Photonic Transmittance in Metallic and Left Handed Superlattices

Photonics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 29 ◽  
Author(s):  
Pedro Pereyra

We study the transmission of electromagnetic waves through layered structures of metallic and left-handed media. Resonant band structures of transmission coefficients are obtained as functions of the incidence angle, the geometric parameters, and the number of unit cells of the superlattices. The theory of finite periodic systems that we use is free of assumptions, the finiteness of the periodic system being an essential condition. We rederive the correct recurrence relation of the Chebyshev polynomials that carry the physical information of the coherent coupling of plasmon modes and interface plasmons and surface plasmons, responsible for the photonic bands and the resonant structure of the surface plasmon polaritons. Unlike the dispersion relations of infinite periodic systems, which at best predict the bandwidths, we show that the dispersion relation of this theory predicts not only the bands, but also the resonant plasmons’ frequencies, above and below the plasma frequency. We show that, besides the strong influence of the incidence angle and the characteristic low transmission of a single conductor slab for frequencies ω below the plasma frequency ω p , the coherent coupling of the bulk plasmon modes and the interface surface plasmon polaritons lead to oscillating transmission coefficients and, depending on the parity of the number of unit cells n of the superlattice, the transmission coefficient vanishes or amplifies as the conductor width increases. Similarly, the well-established transmission coefficient of a single left-handed slab, which exhibits optical antimatter effects, becomes highly resonant with superluminal effects in superlattices. We determine the space-time evolution of a wave packet through the λ / 4 photonic superlattice whose bandwidth becomes negligible, and the transmission coefficient becomes a sequence of isolated and equidistant peaks with negative phase times. We show that the space-time evolution of a Gaussian wave packet, with the centroid at any of these peaks, agrees with the theoretical predictions, and no violation of the causality principle occurs.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Lidan Zhou ◽  
Mingcheng Panmai ◽  
Jin Xiang ◽  
Sheng Lan

Abstract We investigate numerically and experimentally the optical properties of the transverse electric (TE) waves supported by a dielectric-metal heterostructure. They are considered as the counterparts of the surface plasmon polaritons (i.e., the transverse magnetic (TM) waves) which have been extensively studied in the last several decades. We show that TE waves with resonant wavelengths in the visible light spectrum can be excited in a dielectric-metal heterostructure when the optical thickness of the dielectric layer exceeds a critical value. We reveal that the electric and magnetic field distributions for the TE waves are spatially separated, leading to higher quality factors or narrow linewidths as compared with the TM waves. We calculate the thickness, refractive index and incidence angle dispersion relations for the TE waves supported by a dielectric-metal heterostructure. In experiments, we observe optical resonances with linewidths as narrow as ∼10 nm in the reflection or scattering spectra of the TE waves excited in a Si3N4/Ag heterostructure. Finally, we demonstrate the applications of the lowest-order TE wave excited in a Si3N4/Ag heterostructure in optical display with good chromaticity and optical sensing with high sensitivity.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Alibakhshi Kenari

A variety of antennas have been engineered with MTMs and MTM-inspired constructs to improve their performance characteristics. This report describes the theory of MTMs and its utilization for antenna's techniques. The design and modeling of two MTM structures withε-μconstitutive parameters for patch antennas are presented. The framework presents two novel ultrawideband (UWB) shrinking patch antennas filled with composite right-/left-handed transmission line (CRLH-TL) structures. The CRLH-TL is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. The CRLH-TL structures enhance left-handed (LH) characteristics which enable size reduction and large frequency bandwidth. The large frequency bandwidth and good radiation properties can be obtained by adjusting the dimensions of the patches and CRLH-TL structures. This contribution demonstrates the possibility of reducing the size of planar antennas by using LH-transmission lines. Two different types of radiators are investigated—a planar patch antenna composed of fourO-formed unit cells and a planar patch antenna composed of sixO-shaped unit cells. A CRLH-TL model is employed to design and compare these two approaches and their realization with a varying number ofL-Cloaded unit cells. Two representative antenna configurations have been selected and subsequently optimized with full-wave electromagnetic analysis. Return loss and radiation pattern simulations of these antennas prove the developed concept.


2021 ◽  
Author(s):  
Chien Ming Wang ◽  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Nagi abdussamie ◽  
...  

<p>Floating breakwaters have been used to protect shorelines, marinas, very large floating structures, dockyards, fish farms, harbours and ports from harsh wave environments. A floating breakwater outperforms its bottom-founded counterpart with respect to its environmental friendliness, cost-effectiveness in relatively deep waters or soft seabed conditions, flexibility for expansion and downsizing and its mobility to be towed away. The effectiveness of a floating breakwater design is assessed by its wave attenuation performance that is measured by the wave transmission coefficient (i.e., the ratio of the transmitted wave height to the incident wave height or the ratio of the transmitted wave energy to the incident wave energy). In some current design guidelines for floating breakwaters, the transmission coefficient is estimated based on the assumption that the realistic ocean waves may be represented by regular waves that are characterized by the significant wave period and wave height of the wave spectrum. There is no doubt that the use of regular waves is simple for practicing engineers designing floating breakwaters. However, the validity and accuracy of using regular waves in the evaluation of wave attenuation performance of floating breakwaters have not been thoroughly discussed in the open literature. This study examines the wave transmission coefficients of floating breakwaters by performing hydrodynamic analysis of some large floating breakwaters in ocean waves modelled as regular waves as well as irregular waves described by a wave spectrum such as the Bretschneider spectrum. The formulation of the governing fluid motion and boundary conditions are based on classical linear hydrodynamic theory. The floating breakwater is assumed to take the shape of a long rectangular box modelled by the Mindlin thick plate theory. The finite element – boundary element method was employed to solve the fluid-structure interaction problem. By considering heave-only floating box-type breakwaters of 200m and 500m in length, it is found that the transmission coefficients obtained by using the regular wave model may be smaller (or larger) than that obtained by using the irregular wave model by up to 55% (or 40%). These significant differences in the transmission coefficient estimated by using regular and irregular waves indicate that simplifying assumption of realistic ocean waves as regular waves leads to significant over/underprediction of wave attenuation performance of floating breakwaters. Thus, when designing floating breakwaters, the ocean waves have to be treated as irregular waves modelled by a wave spectrum that best describes the wave condition at the site. This conclusion is expected to motivate a revision of design guidelines for floating breakwaters for better prediction of wave attenuation performance. Also, it is expected to affect how one carries out experiments on floating breakwaters in a wave basin to measure the wave transmission coefficients.</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Pedro Pereyra

We show that using the theory of finite periodic systems we obtain an improved approach to calculate transmission coefficients and transmission times of electromagnetic waves propagating through fiber Bragg gratings. We discuss similarities, advantages, and differences between this approach and the well known less accurate one coupled mode approximation and the pseudo-Floquet Mathieu functions approach.


2009 ◽  
Vol 88 (2) ◽  
pp. 24002 ◽  
Author(s):  
E. Reyes-Gómez ◽  
D. Mogilevtsev ◽  
S. B. Cavalcanti ◽  
C. A. A. de Carvalho ◽  
L. E. Oliveira

2014 ◽  
Vol 6 (6) ◽  
pp. 629-637 ◽  
Author(s):  
Mohammad Alibakhshi

In this paper, four new wideband small antennas based on the composite right/left-handed transmission line (CRLH-TL) structures are designed, tooled, and made. The proposed antennas are introduced with best in size, bandwidth, and radiation patterns. The physical size and the operational frequency of the antennas depend on size of the unit cells and the equivalent transmission line model parameters of the CRLH-TLs, including series inductance, series capacitance, shunt inductance, and shunt capacitance. To define characteristics of the antennas, the engraved J- and I-formed voids on the radiation patches are used. The physical sizes of the CRLH antennas are 0.45λ0 × 0.175λ0 × 0.02λ0, 0.428λ0 × 0.179λ0 × 0.041λ0, 0. 564λ0 × 0.175λ0 × 0.02λ0, and 0.556λ0 × 0.179λ0 × 0.041λ0 in terms of free-space wavelengths at the 7.5, 7.7, 7.5, and 7.7 GHz, respectively. These metamaterial antennas can be used for frequency bands from 7.5–16.8 GHz, 7.7–18.6 GHz, 7.25–17.8 GHz, and 7.8–19.85 GHz for VSWR < 2, which correspond to 74.4, 82.88, 84.23, and 87.16% practical bandwidths, respectively. Also, the ranges of the measured gains and radiation efficiencies of the recommended antennas are 0.1 dBi < G < 2.1 dBi and 20% < eff < 44.3%, and 0.8 dBi < G < 2.35 dBi and 23% < eff < 48.2%, for J-shaped antennas, whereas 0.1.15 dBi < G < 3.11 dBi and 30.24% < eff < 58.6%, and 1.2 dBi < G < 3.4 dBi and 32.4% < eff < 68.1% for I-shaped antennas, respectively.


2015 ◽  
Vol 23 (3) ◽  
Author(s):  
S.A. Taya ◽  
D.M. El−Amassi

AbstractThe present article investigates theoretically the refection and transmission through a lossless dielectric slab embedded between two semi−infinite left−handed materials (LHMs) in which the electric permittivity and magnetic permeability are simultaneously negative. The LHM is assumed to be dispersive according to Lorentz as well as Drude medium model. The reflection and transmission coefficients are studied with the angle of incidence, frequency and slab thickness. The effect of the damping frequency is also investigated. It is found that the damping frequency has an insignificant effect on reflected, transmitted and loss powers. Band pass filter is one of the possible applications of the proposed structure.


2014 ◽  
Vol 1035 ◽  
pp. 437-441
Author(s):  
Jin Xia Gao ◽  
Ji Jiang Wu

One-dimensional dielectric photonic crystals (PCs) with complex substitutional defect layers, consisting of superconducting (SC) and dielectric sublayers are theoretically studied. The influence of the incidence angle on the photonic gap spectra is theoretically analyzed. The pronounced difference in the transmittivity spectra of the PCs with right-handed (RH) and left-handed (LH) positions of the superconducting defect sublayer with respect to the dielectric defect sublayer is demonstrated. It is observed that, for the case of RH SC defect sublayer, the position of the defect mode and the transmittivity at the defect mode frequency strongly depend on the thickness of the superconducting sublayer as well as on the temperature. But the defect modes of the PCs with LH SC defect sublayer are nearly invariant upon the change of the thickness of the superconducting sublayer and the temperature.


Sign in / Sign up

Export Citation Format

Share Document