scholarly journals Effect of Cryopreservation on Olive (Olea europaea L.) Plant Regeneration via Somatic Embryogenesis

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Fatiha Bradaï ◽  
Carolina Sánchez-Romero

Olive somatic embryos have been successfully cryopreserved using the droplet-vitrification method on aluminum foil strips. Although acceptable recovery rates have been obtained after rewarming, the influence of this cryopreservation protocol on the somatic embryogenesis process is unknown. To evaluate the effect of cryopreservation on olive somatic embryogenesis, the behavior of cultures established from cryopreserved somatic embryos was compared with that of control, non-cryopreserved cultures in the different phases of the somatic embryogenesis process. In order to analyze the influence of the genotype, this investigation was carried out in two independent lines. During the proliferation step, only the line T1 was affected by cryopreservation, with higher fresh weight increases. Although similar total embryos were produced per culture, freezing in liquid nitrogen significantly improved the maturation pattern in the line P5. Better germination results were also found in this embryogenic line. The genotype plays a key role, largely determining the effect of cryopreservation on olive somatic embryogenesis. A specific genotype-dependent response was found depending on the culture step. Variations observed could not be associated to differences in the embryogenic lines’ instability to maintain their morphogenic competence after cryopreservation. Embryogenic cultures established after rewarming retained their regeneration capacity, with no evident negative effects affecting their regeneration capacity.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5952 ◽  
Author(s):  
Guadalupe Hernández-Piedra ◽  
Violeta Ruiz-Carrera ◽  
Alberto J. Sánchez ◽  
Arlette Hernández-Franyutti ◽  
Alfonso Azpeitia-Morales

Background Sustainable methods of propagation of Typha domingensis through somatic embryogenesis can help mitigate its current condition of ecological marginalization and overexploitation. This study examined whether differentiation up to coleoptilar embryos could be obtained in an embryogenic line proliferated with light and high auxin concentration. Methods Murashige and Skoog medium at half ionic strength and containing 3% sucrose and 0.1% ascorbic acid was used for the three embryogenic phases. Induction started with aseptic 9-day-old germinated seeds cultured in 0.5 mg L−1 2,4-dichlorophenoxyacetic (2,4-D). Proliferation of the embryogenic callus was evaluated at 2,4-D concentrations ranging from 0 to 2 mg L−1 in cultures maintained in the dark. The dominant embryogenic products obtained in each treatment were used as embryogenic lines in the third phase. Thus, maturation of the somatic embryos (SEs) was analyzed using four embryogenic lines and under light vs. dark conditions. Embryogenic differentiation was also monitored histologically. Results Proliferation of the nine morphogenetic products was greater in the presence of 2,4-D, regardless of the concentration, than in the absence of auxin. Among the products, a yellow callus was invariably associated with the presence of an oblong SE and suspended cells in the 2,4-D treatments, and a brown callus with scutellar somatic embryos (scSEs) in the treatment without 2,4-D. During the maturation phase, especially the embryogenic line but also the light condition resulted in significant differences, with the highest averages of the nine morphogenetic products obtained under light conditions and the maximum concentration of auxin (YC3 embryogenic line). Only this line achieved scSE growth, under both light and dark conditions. Structurally complete coleoptilar somatic embryos (colSEs) could be anatomically confirmed only during the maturation phase. Discussion In the embryogenic line cultured with the highest auxin concentration, light exposure favored the transdifferentiation from embryogenic callus to scSE or colSE, although growth was asynchronous with respect to the three embryogenic phases. The differentiation and cellular organization of the embryos were compatible with all stages of embryogenic development in other monocotyledons. The growth of colSEs under light conditions in the YC3 embryogenic line and the structurally complete anatomic description of colSEs demonstrated that differentiation up to coleoptilar embryos could be obtained. The diversity of embryogenic products obtained in the YC3 embryogenic line opens up the opportunity to synchronize histological descriptions with the molecules associated with the somatic embryogenesis of Typha spp.


2017 ◽  
Vol 59 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Teresa Hazubska-Przybył ◽  
Monika Dering

AbstractEmbryogenic cultures of plants are exposed to various stress factors bothin vitroand during cryostorage. In order to safely include the plant material obtained by somatic embryogenesis in combination with cryopreservation for breeding programs, it is necessary to monitor its genetic stability. The aim of the present study was the assessment of somaclonal variation in plant material obtained from embryogenic cultures ofPicea abies(L.) Karst. andP. omorika(Pančić) Purk. maintainedin vitroor stored in liquid nitrogen by the pregrowth-dehydration method. The analysis of genetic conformity with using microsatellite markers was performed on cotyledonary somatic embryos (CSE), germinating somatic embryos (GSE) and somatic seedlings (SS), obtained from tissues maintainedin vitroor from recovered embryogenic tissues (ETc) and CSE obtained after cryopreservation. The analysis revealed changes in the DNA of somatic embryogenesis-derived plant material of bothPiceaspp. They were found in plant material from 8 out of 10 tested embryogenic lines ofP. abiesand in 10 out of 19 embryogenic lines ofP. omorikaafterin vitroculture. Changes were also detected in plant material obtained after cryopreservation. Somaclonal variation was observed in ETc and CSE ofP. omorikaand at ETv stage ofP. abies. However, most of the changes were induced at the stage of somatic embryogenesis initiation. These results confirm the need for monitoring the genetic stability of plants obtained by somatic embryogenesis and after cryopreservation for both spruce species.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
J. Lema-Rumińska ◽  
K. Goncerzewicz ◽  
M. Gabriel

Having produced the embryos of cactusCopiapoa tenuissimaRitt. formamonstruosaat the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100 μM on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1 μM) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1 μM) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10–100 μM) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10 μM ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight.


Author(s):  
Muniappan V ◽  
Manivel P ◽  
Prabakaran V ◽  
Palanivel S ◽  
Parvathi S

Somatic embryogenesis was carried out epicotyl portion of the mature embryo/apical portion. The somatic embryo induction medium containing 2,4-D or NAA (10.0 to 50.0 mg/l). Of the two concentrations tested 2,4-D (30.0mg/l) recorded the highest percentage of response followed by NAA (30.0mg/l). But the highest number of somatic embryo were recorded in 30.0mg/l of 2,4-D followed by NAA. The apical portion of the mature embryo formed direct embryos without any intervention of callus. The maximum percentage of embryogenic cultures were noticed in 30.0mg/l of 2,4-D followed by NAA at 30.0mg/l. for the differentiation of somatic embryos, the embryogenic masses were transferred to medium without any growth regulator. The maximum number of somatic embryos per culture was recorded in 30 mg/l of 2,4-D followed by 30.0 mg/l of NAA. Keywords: Arachis hypogaea L.,Somatic Embryogenesis, 2,4-D and NAA


Author(s):  
T.T.B. Phuong ◽  
V.P. Trung ◽  
N.H. An ◽  
N.D. Tuan ◽  
P.T.T. Nguyen

Background: Dinh Lang [Polyscias fruticosa (L.) Harms] is a medicinal plant widely grown in Vietnam, with proven note-worthy health benefits. However, Dinh Lang’s amounts of triterpenoid saponins could not meet the need of the pharmaceutical industry. Thus, this study’s purpose is to figure out the optimal condition for raising Dinh Lang’s cell biomass, rhizogenesis and somatic embryogenesis to provide materials for bioactive compound productions. Methods: Different 2,4-dichlorophenoxyacetic acid and α-naphthaleneacetic acid concentrations (0.5, 1.0, 1.5 and 2.0 mg/L) were examined to determine the best amount of each plant growth regulator for raising cells’ biomass, rhizogenesis and somatic embryogenesis. In each treatment, two grams of eight-week-old calli were cultured in 50 mL of liquid MS medium. Result: It is demonstrated by the results that liquid MS medium containing 1.5 mg/L α-naphthaleneacetic acid has the capacity of producing the highest numbers of somatic embryos (489 embryos per flask) and rooted cells (259.5 cells per flask), while the fresh weight of cells cultured in the medium given 1.5 mg/L 2,4-dichlorophenoxyacetic acid reached its peak of 5.7 g.


2016 ◽  
Vol 11 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Guomin Shi ◽  
Lina Yang ◽  
Tao He

AbstractA protocol is described for plant regeneration from protoplasts of Gentiana straminea Maxim. via somatic embryogenesis. Protoplasts were isolated from embryogenic calli in an enzyme solution composed of 2% Cellulase Onozuka R-10, 0.5% Macerozyme R-10, 0.5% Hemicellulase, and 0.5 M sorbitol with a yield of 3.0 × 106 protoplasts per gram of fresh weight. Liquid, solid-liquid double layer (sLD) and agar-pool (aPL) culture systems were used for protoplast culture. The aPL culture was the only method that produced embryogenic, regenerative calli. With aPL culture, the highest frequencies of protoplast cell division and colony formation were 39.6% and 16.9%, respectively, on MS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L N6-benzylaminopurine (BA). Microcalli were transferred to solid MS medium containing a reduced concentration of 2,4-D (0.5 mg/L) to promote the formation of embryogenic calli. Somatic embryos developed into plantlets on MS medium supplemented with 2 mg/L BA at a rate of 43.7%.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 912
Author(s):  
Fang Gao ◽  
Chunxue Peng ◽  
Hao Wang ◽  
Iraida Nikolaevna Tretyakova ◽  
Alexander Mikhaylovich Nosov ◽  
...  

Korean pine is the dominant species of Korean pine forests. It is an economically valuable species that yields oil, high-quality timber and nuts, and it offers great prospects for further development. Complete regenerated plants of Korean pine were obtained via somatic embryogenesis using megagametophytes as the explant. The seeds of 27 families of Korean pine were collected to induce embryogenic lines. We compared the effects of explant collection time, family and medium components (concentrations of sucrose, plant growth regulators and acid-hydrolyzed casein) on embryogenic lines induction. The effects of plant growth regulators and L-glutamine contents on the proliferation and maturation of embryogenic cell lines were studied, and the germinating ability of different cell lines was evaluated. The embryogenic lines induction percentage of Korean pine reached 33.33%. When 4.52 μmol·L−1 2,4-D and 2.2 μmol·L−1 6-BA were added to the medium of embryogenic lines proliferation, the ability of embryo maturation was the best (cell line 001#-100 was 135.71·g−1 fresh weight). Adding 1–1.5g L−1 L-glutamine to the proliferation medium can improve the ability of embryo maturation (cell line 001#-100 was 165.63·g−1 fresh weight). The germination percentage of the three cell lines tested was significant, and the highest was 66%. We report on successful regeneration and cryopreservation methods for somatic embryos of Korean pine. This technology could be used to propagate the excellent germplasm resources of Korean pine and to establish multi-varietal forestry.


2008 ◽  
Vol 53 (No. 2) ◽  
pp. 74-87
Author(s):  
M. Mauleová ◽  
J. Vítámvás

Somatic embryogenic cultures were established from proembryonal suspensor masses (PEMs) derived from mature seeds of Norway spruce. In this study we used more than 4,300 seeds of <i>Picea abies</i> from randomly collected commercial seed lot (originated from open-pollination). Most of the studies are focused on selected genotypes known for higher response to propagation protocols. As indicated in this study, there is a significant variation in success rate of somatic embryogenesis in randomly selected seed lot of Norway spruce. Nutrient GD (1 to 4), LP (1 to 5) media and different level of plant grow regulators (BA, NAA, kinetin and 2,4D) were used for initiation and proliferation of embryogenic cultures. Transfer of embryogenic callus onto medium containing abscisic acid stimulated development of early-established individual embryos. Media GD (5 and 6) and LP (9 to 11) supplemented with ABA (7.5; 20; 38 &mu;M) and PEG 4000 (2%), were used for stadium of maturation. Conversion of somatic embryos to plantlets was stimulated by partial desiccation treatment (HRH-treatment) and by medium changes. On these media plantlets started to regenerate within three weeks.


2000 ◽  
Vol 30 (12) ◽  
pp. 1867-1876 ◽  
Author(s):  
R E Percy ◽  
K Klimaszewska ◽  
D R Cyr

A multiyear program was undertaken to develop a somatic embryogenesis system for clonal propagation of western white pine (Pinus monticola Dougl.). Developing seeds were used to initiate embryogenic lines from families used in blister-rust (Cronartium ribicola J.C. Fisch.) resistance breeding programs in British Columbia. The most responsive seeds contained zygotic embryos ranging in development from late cleavage polyembryony to the early dominance stage. Overall, 14 of 15 open-pollinated families produced embryogenic lines. The best results (0.8-6.7% initiation) were obtained using modified Litvay medium with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BA) at 2.25 µM. Proliferation of embryogenic tissue was enhanced by culturing tissue as a thin layer on filter paper supports. Approximately 300 lines representing 18 open- and control-pollinated families were cryopreserved. The highest number of mature somatic embryos was obtained on maturation medium containing 120 µM abscisic acid, 180 mM sucrose, and 1.0% gellan gum. Of 61 lines tested on this medium, 77% produced mature somatic embryos. In vitro germination and early growth occurred at a high frequency (90-95%), and plants from 45 genotypes were subsequently transferred to a greenhouse.


Biologia ◽  
2010 ◽  
Vol 65 (5) ◽  
Author(s):  
Shaoyu Chen ◽  
Shanna Chen ◽  
Fang Chen ◽  
Tao Wu ◽  
Yinbin Wang ◽  
...  

AbstractSomatic embryogenesis (SE) was successfully induced from mature zygotic embryos of seven families of Picea likiangensis (Franch.) Pritz after 20 weeks culture on initiation medium. Three basal media (one-half strength LM medium, one-half strength LP medium and improved LP medium) with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (6-BA) were tested but only one-half strength LM medium supplemented with 2,4-D and 6-BA was successful for the embryogenic cultures (EC) initiation. The initiation frequencies of EC varied greatly from different families when culturing on the same initiation medium. The highest frequency (41.3%) was induced from one of the families on one-half strength LM medium supplemented with 3 mg L−1 2,4-D and 1.5 mg L−1 6-BA and 16.83% on average for seven families. EC were subcultured and proliferated on the same medium as the initiation one every 10 days. 3 lines of EC induced from the same family were applied in maturation experiment. Cotyledonary somatic embryos were observed after EC were transferred to maturation media of one-half strength LM medium containing 20-80 mg L−1 abscisic acid and 7.5% polyethylene glycol (PEG-4000). However, one-half strength LM medium supplemented with 40 mg L−1 or 60 mg L−1 ABA and 7.5% PEG gave the best maturation and the 3 lines showed different ability in maturation. Over 80% cotyledonary somatic embryos germinated normally on DCR medium containing 0.2% activated carbon. The success on SE induction of the species has provided an effective clonal propagation method for this important tree’s genetic improvement.


Sign in / Sign up

Export Citation Format

Share Document