scholarly journals Abscisic Acid’s Role in the Modulation of Compounds that Contribute to Wine Quality

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 938
Author(s):  
Rodrigo Alonso ◽  
Federico J. Berli ◽  
Ariel Fontana ◽  
Patricia Piccoli ◽  
Rubén Bottini

Abscisic acid (ABA) plays a crucial role in the plant responses to environmental signals, in particular by triggering secondary metabolism. High-altitude vineyards in Mendoza, Argentina, are exposed to elevated solar ultraviolet-B (UV-B) levels and moderate water deficits (WD), thus producing grapevine berries with high enological quality for red winemaking. Volatile organic compounds (VOCs) and phenolic compounds (PCs) accumulate in the berry skins, possess antioxidant activity, and are important attributes for red wine. The aim of the present study was to analyze the role of ABA in the modulation of these compounds in Vitis vinifera L. cv. Malbec wines by comparing the independent and interactive effects of UV-B, WD, and ABA. Two UV-B treatments (ambient solar UV-B or reduced UV-B), two watering treatments (well-watered or moderate water deficit) and two ABA treatments (no ABA and sprayed ABA) were given in a factorial design during one growing season. Sprayed ABA, alone and/or in combination with UV-B (specially) and WD (to a lower degree) increased low molecular weight polyphenols (LMWP), anthocyanins, but most noticeably the stilbenes trans-resveratrol and piceid. Under these treatments, VOCs were scarcely affected, and the antioxidant capacity was influenced by the combination of UV-B and WD. From a technological point of view, ABA applications may be an effective vineyard management tool, considering that it elicited a higher content of compounds beneficial for wine aging, as well compounds related to color.

2020 ◽  
pp. 1-15
Author(s):  
Nicolas Fischer ◽  
Thomas Efferth

BACKGROUND: Grapevine (Vitis vinifera L.) as basis for winemaking is one of the most economically important plants in modern agriculture. As requirements in viticulture are increasing due to changing environments, terroir and pests, classical agriculture techniques reach their limits. OBJECTIVE: We summarize the impact of modern “omics” technologies on modern grapevine breeding and cultivation, as well as for dealing with challenges in viniculture caused by environmental or terroir changes and pests and diseases. In this review, we give an overview on current research on the influence of “omics” technologies on modern viticulture. RESULTS: Considerable advances in bioinformatics and analytical techniques such as next generation sequencing or mass spectrometry fueled new molecular biological studies. Modern “omics” technologies such as “genomics”, “transcriptomics”, “proteomics” and “metabolomics” allow the investigation on a large-scale data basis and the identification of key markers. Holistic understanding of genes, proteins and metabolites in combination with external biotic and abiotic factors improves vine and wine quality. CONCLUSION: The rapid evolution in wine quality was only enabled by the progress of modern biotechnological methods developing enology from a handcraft to science.


2016 ◽  
Vol 96 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Kirsten D. Hannam ◽  
Gerry H. Neilsen ◽  
Thomas A. Forge ◽  
Denise Neilsen ◽  
Istvan Losso ◽  
...  

There is growing interest among commercial wine grape (Vitis vinifera L.) growers in reducing water and fertilizer consumption, but little information exists on how best to combine conservative irrigation and soil management practices in the vineyard. In a 3-year-old Merlot vineyard in the semi-arid Okanagan Valley, British Columbia, the interactive effects of resource-conserving micro-irrigation (drippers or microsprinkers), nutrient applications (fertigation or compost), and surface mulching (wood and bark chips) on nitrogen (N) and phosphorus (P) dynamics in the wetted zone of surface soils were examined throughout the growing season using ion-exchange resins. Treatment differences in soil carbon and major nutrient pools, temperature, and moisture were also measured. Higher NO3-N was adsorbed by resins buried under drippers than under microsprinklers except in mulched plots, where NO3-N was uniformly low. By enhancing soil carbon availability and moderating soil microclimate, surface mulches may have promoted microbial immobilisation of N. Compost applications increased soil ortho-P levels, especially on mulched plots, suggesting that both P inputs (from compost) and enhanced microbial biomass (from mulch) promoted soil P cycling. Future work will examine the interactive effects of these resource-efficient practices on leaching losses, greenhouse gas emissions, crop productivity, and fruit quality.


2007 ◽  
Vol 85 (2) ◽  
pp. 148-159 ◽  
Author(s):  
Mirwais M. Qaderi ◽  
M. Anisul Islam ◽  
David M. Reid ◽  
Saleh Shah

Few studies have considered ethylene involvement in plant responses to ultraviolet-B (UVB) radiation. We studied the responses to UVB radiation of one wild-type (WT, ‘Westar’) canola (Brassica napus L.) with normal ethylene evolution and two transgenic (C1, C2) lines with lower ethylene evolution. Canola plants were grown under biologically effective levels of UVB (UVBBE) radiation: 0.03 (low), 4.88 (medium), and 9.78 (high) kJ·m–2·d–1 in controlled-environment growth chambers. The growth and physiological parameters of the plants were measured. Of the two transgenic lines, C1 demonstrated higher ethylene evolution than C2 but lower than WT. The lowest aboveground and belowground biomass was found with exposure to high UVB radiation. WT produced more biomass than C2. Net CO2 assimilation and transpiration did not vary among plant lines or UVB treatments. Water-use efficiency was lower under high UVB radiation than under low UVB. The quantum yield of photosystem II was higher for C2 than for either WT or C1. WT did not differ from transgenic plants in respect to photosynthetic pigments and UV-screening compounds. Photosynthetic pigment concentration decreased, but concentration of UV-screening compounds, thickness of epicuticular wax, and the rate of root hydraulic conductance were increased by exposure to UVB radiation. While there appears to be a lack of ethylene involvement in some of the measured physiological parameters, the transgenic plants exhibited differential sensitivity to UVB in a few key measured parameters.


2011 ◽  
Vol 23 (4) ◽  
pp. 389-398 ◽  
Author(s):  
Vito Vitale ◽  
Boyan Petkov ◽  
Florence Goutail ◽  
Christian Lanconelli ◽  
Angelo Lupi ◽  
...  

AbstractThe features of solar UV irradiance measured at the Italian-French Antarctic Plateau station, Concordia, during the springs of 2008 and 2009 are presented and discussed. In order to study the impact of the large springtime variations in total ozone column on the fraction of ultraviolet B (UV-B) irradiance (fromc.290–315 nm) reaching the Earth surface, irradiance datasets corresponding to fixed solar zenith angles (SZAs = 65°, 75° and 85°) are correlated to the daily ozone column provided by different instruments. For these SZAs the radiation amplification factor varied from 1.58–1.94 at 306 nm and from 0.68–0.88 at 314 nm. The ultraviolet index reached a maximum level of 8 in the summer, corresponding to the typical average summer value for mid latitude sites. The solar irradiance pertaining to the ultraviolet A (UV-A, 315–400 nm) spectral band was found to depend closely on variations of atmospheric transmittance characteristics as reported by previous studies. Model simulations of UV-B irradiance showed a good agreement with field measurements at 65° and 75° SZAs. For SZA = 85° the ozone vertical distribution significantly impacted model estimations. Sensitivity analysis performed by hypothetically varying the ozone distribution revealed some features of the ozone profiles that occurred in the period studied here.


Author(s):  
María-Pilar Sáenz-Navajas ◽  
Jordi Ballester ◽  
Purificación Fernández-Zurbano ◽  
Vicente Ferreira ◽  
Dominique Peyron ◽  
...  

2019 ◽  
Vol 46 (5) ◽  
pp. 428
Author(s):  
Shifeng Cao ◽  
Zeyu Xiao ◽  
Vladimir Jiranek ◽  
Stephen D. Tyerman

Cell death (CD) in Vitis vinifera L grape berries, exemplified in Shiraz, occurs late in ripening influencing yield, berry and wine quality. Here we isolated and functionally characterised a BON1-associated gene, VvBAP1 from Shiraz berries, encoding a small protein with a C2 domain. VvBAP1 transcript increased during fruit development from veraison to harvest, and was significantly inhibited by drought stress 92 days after flowering when CD normally begins. This was correlated with high CD in Shiraz berries. The agrobacterium-mediated transient expression of VvBAP1 in tobacco leaves led to a decrease in electrolyte leakage and downregulated a marker gene (Hsr203J) for cell death. Expressing VvBAP1 in yeast (Saccharomyces cerevisiae) also alleviated cell death induced by hydrogen peroxide (H2O2). Overexpression of VvBAP1 in Arabidopsis increased resistance to H2O2 and reduced CD due to higher expression of genes involved in anti-oxidative responses. Arabidopsis overexpressing VvBAP1 displayed higher tolerance to drought accompanied by upregulation of antioxidant-related gene expression. VvBAP1 complemented an Arabidopsis bap1 knockout by abolishing its CD phenotypes. These results indicate that VvBAP1 may play a role in alleviating CD in grape berries and its downregulation under drought stress may be responsible for the generally observed increase in CD within the berry.


Sign in / Sign up

Export Citation Format

Share Document