scholarly journals Isolation and Characterization of APETALA3 Orthologs and Promoters from the Distylous Fagopyrum esculentum

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1644
Author(s):  
Lingtian Zeng ◽  
Jiao Zhang ◽  
Xuan Wang ◽  
Zhixiong Liu

Common buckwheat (Fagopyrum esculentum) produces distylous flowers with undifferentiated petaloid tepals, which makes it obviously different from flowers of model species. In model species Arabidopsis, APETALA3 (AP3) is expressed in petal and stamen and specifies petal and stamen identities during flower development. Combining with our previous studies, we found that small-scale gene duplication (GD) event and alternative splicing (AS) of common buckwheat AP3 orthologs resulted in FaesAP3_1, FaesAP3_2 and FaesAP3_2a. FaesAP3_2 and FaesAP3_2a were mainly expressed in the stamen of thrum and pin flower. Promoters functional analysis suggested that intense GUS staining was observed in the whole stamen in pFaesAP3_2::GUS transgenic Arabidopsis, while intense GUS staining was observed only in the filament of stamen in pFaesAP3_1::GUS transgenic Arabidopsis. These suggested that FaesAP3_1 and FaesAP3_2 had overlapping functions in specifying stamen filament identity and work together to determine normal stamen development. Additionally, FaesAP3_2 and FaesAP3_2a owned the similar ability to rescue stamen development of Arabidopsis ap3-3 mutant, although AS resulted in a frameshift mutation and consequent omission of the complete PI-derived motif and euAP3 motif of FaesAP3_2a. These suggested that the MIK region of AP3-like proteins was crucial for determining stamen identity, while the function of AP3-like proteins in specifying petal identity was gradually obtained after AP3 Orthologs acquiring a novel C-terminal euAP3 motif during the evolution of core eudicots. Our results also provide a clue to understanding the early evolution of the functional specificity of euAP3-type proteins involving in floral organ development in core eudicots, and also suggested that FaesAP3_2 holds the potential application for biotechnical engineering to develop a sterile male line of F. esculentum.

2019 ◽  
Vol 71 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Yong Zhou ◽  
Lifang Hu ◽  
Lingli Ge ◽  
Guanghua Li ◽  
Peng He ◽  
...  

The floral homeotic C-function MADS gene AGAMOUS (AG) in Arabidopsis plays crucial roles in specifying stamen and carpel identities as well as determining floral meristem. However, there have been only a few studies of floral homeotic C-function genes in cucumber thus far. In the present study, CsMADS24, a putative AG ortholog from cucumber, was isolated and characterized. Sequence analysis and protein sequence alignment revealed that the deduced CsMADS24 protein contained the typical MIKC structure and the N-terminal extension, as well as two highly conserved AG motifs (I and II). Phylogenetic analysis showed that CsMADS24 fell into the clade of core eudicots, while being distant from the AG orthologs of basal eudicots, monocots and gymnosperms. Expression analysis by RT-PCR showed that CsMADS24 was exclusively expressed in female flower buds. In situ hybridization revealed that CsMADS24 expression was only detected in the carpels. Functional analyses indicated that the sepals were partly converted into carpelloid-like structures in 35S::35S::CsMADS24 transgenic plants. In addition, earlier flowering and delayed floral organ abscission during the development of siliques were also observed in transgenic Arabidopsis. Our findings demonstrate that the AG ortholog plays an exclusive role in carpel specification of cucumber, providing a basis for revealing the mechanisms of reproductive development in cucumber.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1142
Author(s):  
Alena Vollmannová ◽  
Janette Musilová ◽  
Judita Lidiková ◽  
Július Árvay ◽  
Marek Šnirc ◽  
...  

Common buckwheat (Fagopyrum esculentum Moench) is a valuable source of proteins, B vitamins, manganese, tryptophan, phytochemicals with an antioxidant effect, and the natural flavonoid rutin. Due to its composition, buckwheat supports the human immune system, regulates blood cholesterol, and is suitable for patients with diabetes or celiac disease. The study aimed to compare the allocation of selected phenolic acids (neochlorogenic acid, chlorogenic acid, trans-caffeic acid, trans-p-coumaric acid, trans-sinapic acid, trans-ferulic acid) and flavonoids (rutin, vitexin, quercetin, kaempferol) in the leaves, flowers, and grain of buckwheat cultivars of different origin. The content of individual phenolics was determined by the HPLC-DAD method. The results confirmed the determining role of cultivar on the relative content of chlorogenic acid, trans-caffeic acid, trans-sinapic acid, vitexin, and kaempferol in buckwheat plants. A significantly negative correlation among concentrations of phenolic acids in different common buckwheat plant parts shows that there are different mechanisms of genetic influences on the concentration of phenolic substances in common buckwheat flowers, leaves, and grain. These differences should be taken into account when breeding buckwheat for a high concentration of selected phenolic substances.


Author(s):  
Ryo Okada ◽  
Hiromitsu Moriyama ◽  
Takashi Ogawara ◽  
Heather Cizek ◽  
Rodrigo A. Valverde

2019 ◽  
Vol 20 (17) ◽  
pp. 4303 ◽  
Author(s):  
Hongyou Li ◽  
Qiuyu Lv ◽  
Jiao Deng ◽  
Juan Huang ◽  
Fang Cai ◽  
...  

Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.


Sign in / Sign up

Export Citation Format

Share Document