scholarly journals Okra (Abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1683
Author(s):  
Thamires Lacerda Dantas ◽  
Flávia Carolina Alonso Buriti ◽  
Eliane Rolim Florentino

Abelmoschus esculentus has fruit popularly known as okra and belongs to the Malvaceae family. It is commonly used in cooking but also in traditional medicine in the treatment of worms, dysentery, inflammation, and also irritation of the stomach, intestines, and kidneys, as it is a potential functional food. Its mucilage is a highly viscous polysaccharide that is mostly composed of monosaccharides D-galactose, L-rhamnose, and galacturonic acid, as well as proteins and minerals. The functional properties of okra mucilage have been widely studied, mainly for its potential antidiabetic activity; thus, its use as adjuvant or nutraceutical therapy for diabetes is very promising. Due to its rheological properties, it is a potential resource for pharmaceutical and food applications. Okra mucilage can be extracted by several methods, which can directly influence its physicochemical characteristics and biological activity. Features such as low cost, non-toxicity, biocompatibility, and high availability in nature arouse the interest of researchers for the study of okra mucilage. The survey of research on the applications of okra mucilage highlights the importance of using this promising source of bioactive compounds with interesting technological properties. The potential of okra as a functional food, the properties of okra mucilage, and its technological applications are discussed in this review.

2017 ◽  
Vol 42 (1) ◽  
pp. e13392 ◽  
Author(s):  
K. B. Arun ◽  
Janu Chandran ◽  
V. V. Venugopal ◽  
T. S. Madhavankutty ◽  
P. Nisha

Food Research ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 17-23
Author(s):  
D. Rahardiyan

This review revisits the Indonesian Bakso, a restructured meat product that is well preferred by wide ranges of social economy classes of the Indonesian community. Bakso has been a very good low-cost protein source for all. By understanding the complexity of the colloidal structure of Bakso that is constructed by the protein matrix and swelling starch granule interactions, it is also made clear in this review that Bakso has the potential for being more than just a low-cost protein source meal enjoyed by all. The colloidal complexities of the food system in Bakso allows it to entrap fortifications of bioactive compounds, bringing Bakso to the realm of functional foods. Various simple attempts have been made to improve the eating quality of Bakso by simple substitution of the starch with other plant-sourced starches that have functional properties. Effectiveness of these attempts had not scratched the surface of elevating Bakso into the functional food world, therefore it is an opened option to explore the potential of bringing encapsulation of functional components in this mini review processes into the mix. The variables in terms of bioactive functions, sources, polarities, solubilities and reactivities of the various compounds and encapsulating materials is still a large opportunity for further exploration. With encapsulation in play, this opens the doors of refitting Bakso with more varieties of bioactive compounds, and the elements of modifications that can be made to elevating Bakso in the functional food world.


Author(s):  
Moema S. Santana ◽  
Rute Lopes ◽  
Isabela H. Peron ◽  
Carla R. Cruz ◽  
Ana M. M. Gaspar ◽  
...  

Background: Hepatitis C virus infection is a significant global health burden, which causes acute or chronic hepatitis. The acute hepatitis C is generally asymptomatic and progresses to cure, while persistent infection can progress to chronic liver disease and extrahepatic manifestations. Standard treatment is expensive, poorly tolerated, and has variable sustained virologic responses amongst the different viral genotypes. New therapies involve direct acting antivirals; however, it is also very expensive and may not be accessible for all patients worldwide. In order to provide a complementary approach to the already existing therapies, natural bioactive compounds are investigated as to their several biologic activities, such as direct antiviral properties against hepatitis C, and effects on mitigating chronic progression of the disease, which includes hepatoprotective, antioxidant, anticarcinogenic and anti-inflammatory activities; additionally, these compounds present advantages, as chemical diversity, low cost of production and milder or inexistent side effects. Objective: To present a broad perspective on hepatitis C infection, the chronic disease, and natural compounds with promising anti-HCV activity. Methods: This review consists of a systematic review study about the natural bioactive compounds as a potential therapy for hepatitis C infection. Results: The quest for natural products have yielded compounds with biologic activity, including viral replication inhibition in vitro, demonstrating antiviral activity against hepatitis C. Conclusion: One of the greatest advantages of using natural molecules from plant extracts is the low cost of production, not requiring chemical synthesis, which can lead to less expensive therapies available to low and middle-income countries.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 836
Author(s):  
Boda Ravi Kiran ◽  
S. Venkata Mohan

Microalgae are multifaceted photosynthetic microorganisms with emerging business potential. They are present ubiquitously in terrestrial and aquatic environments with rich species diversity and are capable of producing significant biomass. Traditionally, microalgal biomass is being used as food and feed in many countries around the globe. The production of microalgal-based bioactive compounds at an industrial scale through biotechnological interventions is gaining interest more recently. The present review provides a detailed overview of the key algal metabolites, which plays a crucial role in nutraceutical, functional foods, and animal/aquaculture feed industries. Bioactive compounds of microalgae known to exhibit antioxidant, antimicrobial, antitumor, and immunomodulatory effects were comprehensively reviewed. The potential microalgal species and biological extracts against human pathogens were also discussed. Further, current technologies involved in upstream and downstream bioprocessing including cultivation, harvesting, and cell disruption were documented. Establishing microalgae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being.


LWT ◽  
2021 ◽  
pp. 111432
Author(s):  
Pooja Pandey ◽  
Srinivas Mettu ◽  
Hari Niwas Mishra ◽  
Muthupandian Ashokkumar ◽  
Gregory J.O. Martin

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1306
Author(s):  
Marcin Dziedziński ◽  
Joanna Kobus-Cisowska ◽  
Barbara Stachowiak

The pine (Pinus L.) is the largest and most heteromorphic plant genus of the pine family (Pinaceae Lindl.), which grows almost exclusively in the northern hemisphere. The demand for plant-based remedies, supplements and functional food is growing worldwide. Although pine-based products are widely available in many parts of the world, they are almost absent as food ingredients. The literature shows the beneficial effects of pine preparations on human health. Despite the wide geographical distribution of pine trees in the natural environment, there are very few data in the literature on the widespread use of pine in food technology. This study aims to present, characterise and evaluate the content of phytochemicals in pine trees, including shoots, bark and conifer needles, as well as to summarise the available data on their health-promoting and functional properties, and the potential of their use in food and the pharmaceutical industry to support health. Various species of pine tree contain different compositions of bioactive compounds. Regardless of the solvent, method, pine species and plant part used, all pine extracts contain a high number of polyphenols. Pine tree extracts exhibit several described biological activities that may be beneficial to human health. The available examples of the application of pine elements in food are promising. The reuse of residual pine elements is still limited compared to its potential. In this case, it is necessary to conduct more research to find and develop new products and applications of pine residues and by-products.


Author(s):  
Hamidreza Ardalani ◽  
Fatemeh Hejazi Amiri ◽  
Amin Hadipanah ◽  
Kenneth T. Kongstad

Abstract Background Medicinal plants are used to treat various disorders, including diabetes, globally in a range of formulations. While attention has mainly been on the aerial plant parts, there are only a few review studies to date that are focused on the natural constituents present in the plant roots with health benefits. Thus, the present study was performed to review in vivo studies investigating the antidiabetic potential of the natural compounds in plant roots. Methods We sorted relevant data in 2001–2019 from scientific databases and search engines, including Web of Knowledge, PubMed, ScienceDirect, Medline, Reaxys, and Google Scholar. The class of phytochemicals, plant families, major compounds, active constituents, effective dosages, type of extracts, time of experiments, and type of diabetic induction were described. Results In our literature review, we found 104 plants with determined antidiabetic activity in their root extracts. The biosynthesis pathways and mechanism of actions of the most frequent class of compounds were also proposed. The results of this review indicated that flavonoids, phenolic compounds, alkaloids, and phytosteroids are the most abundant natural compounds in plant roots with antidiabetic activity. Phytochemicals in plant roots possess different mechanisms of action to control diabetes, including inhibition of α-amylase and α-glucosidase enzymes, oxidative stress reduction, secretion of insulin, improvement of diabetic retinopathy/nephropathy, slow the starch digestion, and contribution against hyperglycemia. Conclusion This review concludes that plant roots are a promising source of bioactive compounds which can be explored to develop against diabetes and diabetes-related complications. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document