scholarly journals Prohydrojasmon Promotes the Accumulation of Phenolic Compounds in Red Leaf Lettuce

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1920
Author(s):  
Shinya Takahashi ◽  
Yui Namioka ◽  
Haidar Rafid Azis ◽  
Tomoharu Sano ◽  
Mitsuko Aono ◽  
...  

Prohydrojasmon (PDJ) is a synthetic jasmonate derivative that is primarily used as a growth regulator, but its mechanism of action is unclear. In this study, we elucidated the effects of PDJ on phytochemical production in red leaf lettuce. The PDJ treatments promoted the accumulation of phenolic compounds in aerial plant parts. An LC-MS analysis revealed that these accumulated compounds were identified as cyanidin-3-O-glucoside, cyanidin-3-O-(6″-O-malonyl)-glucoside and cyanidin-3-O-(6″-O-malonyl)-glucoside methyl ester. The abundance of these compounds in lettuce extracts increased significantly in response to the PDJ treatment. Additionally, the LC-MS analysis also identified the accumulated phenolic compounds in the extracts of PDJ-treated lettuce, including caffeoyltartaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, and dicaffeoylquinic acid. Gene expression analyses indicated the PDJ treatments upregulated the expression of PAL, F3H, and ANS genes in lettuce. These results suggest that PDJ treatments enhance the expression of genes involved in the synthesis of anthocyanins and phenolic compounds, resulting in an increase in the quantities of these compounds, which reportedly have various functions affecting human physiology.

2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


2021 ◽  
Vol 11 (11) ◽  
pp. 4723
Author(s):  
Rosaria Scudiero ◽  
Chiara Maria Motta ◽  
Palma Simoniello

The cleidoic eggs of oviparous reptiles are protected from the external environment by membranes and a parchment shell permeable to water and dissolved molecules. As a consequence, not only physical but also chemical insults can reach the developing embryos, interfering with gene expression. This review provides information on the impact of the exposure to cadmium contamination or thermal stress on gene expression during the development of Italian wall lizards of the genus Podarcis. The results obtained by transcriptomic analysis, although not exhaustive, allowed to identify some stress-reactive genes and, consequently, the molecular pathways in which these genes are involved. Cadmium-responsive genes encode proteins involved in cellular protection, metabolism and proliferation, membrane trafficking, protein interactions, neuronal transmission and plasticity, immune response, and transcription regulatory factors. Cold stress changes the expression of genes involved in transcriptional/translational regulation and chromatin remodeling and inhibits the transcription of a histone methyltransferase with the probable consequence of modifying the epigenetic control of DNA. These findings provide transcriptome-level evidence of how terrestrial vertebrate embryos cope with stress, giving a key to use in population survival and environmental change studies. A better understanding of the genes contributing to stress tolerance in vertebrates would facilitate methodologies and applications aimed at improving resistance to unfavourable environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Criado-Mesas ◽  
N. Abdelli ◽  
A. Noce ◽  
M. Farré ◽  
J. F. Pérez ◽  
...  

AbstractThere is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050309
Author(s):  
Tao You ◽  
Hailun Zhang ◽  
Mingyu Yang ◽  
Xiao Wang ◽  
Yangming Guo

In biological systems, gene expression is an important subject. In order to clarify the specific process of gene expression, mathematical tools are needed to simulate the process. The Boolean network (BN) is a good mathematical tool. In this paper, we study a Boolean network with intermittent perturbations. This is of great significance for studying genetic mutations in bioengineering. The expression of genes in the internal system of a living being is a very complicated process, and it is clear that the process is trans-ageal for humans. Through the intermittent control and pulse control of the BN, we can obtain the trajectory of gene expression better and faster, which will provide a very important theoretical basis for our next research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marisa Maia ◽  
António E. N. Ferreira ◽  
Rui Nascimento ◽  
Filipa Monteiro ◽  
Francisco Traquete ◽  
...  

Abstract Vitis vinifera, one of the most cultivated fruit crops, is susceptible to several diseases particularly caused by fungus and oomycete pathogens. In contrast, other Vitis species (American, Asian) display different degrees of tolerance/resistance to these pathogens, being widely used in breeding programs to introgress resistance traits in elite V. vinifera cultivars. Secondary metabolites are important players in plant defence responses. Therefore, the characterization of the metabolic profiles associated with disease resistance and susceptibility traits in grapevine is a promising approach to identify trait-related biomarkers. In this work, the leaf metabolic composition of eleven Vitis genotypes was analysed using an untargeted metabolomics approach. A total of 190 putative metabolites were found to discriminate resistant/partial resistant from susceptible genotypes. The biological relevance of discriminative compounds was assessed by pathway analysis. Several compounds were selected as promising biomarkers and the expression of genes coding for enzymes associated with their metabolic pathways was analysed. Reference genes for these grapevine genotypes were established for normalisation of candidate gene expression. The leucoanthocyanidin reductase 2 gene (LAR2) presented a significant increase of expression in susceptible genotypes, in accordance with catechin accumulation in this analysis group. Up to our knowledge this is the first time that metabolic constitutive biomarkers are proposed, opening new insights into plant selection on breeding programs.


2018 ◽  
Vol 13 (10) ◽  
pp. 1934578X1801301
Author(s):  
Nguyen Huu Tung ◽  
Le Quoc Hung ◽  
Ha Van Oanh ◽  
Duong Thi Ly Huong ◽  
Phuong Thien Thuong ◽  
...  

Danshen ( Salvia miltiorrhiza Bunge) is one of the most used medicinal plants in the Oriental medicine and has been well studied for application in modern medicine. In our continuing study on chemical constituents of danshen cultivated in Vietnam, using chromatography separation resulted in the isolation of six phenolic compounds including a benzophenone, iriflophenone 2- O- α-L-rhamnopyranoside (1), and five phenolic acids including rosmarinic acid (2), rosmarinic acid methyl ester (3), rosmarinic acid ethyl ester (4), salvianolic acid A methyl ester (5) and salvianolic acid A ethyl ester (6) from the butanol portion of the danshen crude extract. Beside the typically main phenolic acid components, to our knowledge, iriflophenone 2- O- α-L-rhamnopyranoside (1) was first isolated from salvia sp. On biological testing, compound 1 showed strong antiproliferative activity on HL-60 leukemia cells with the IC50 of 8.9 μM; compounds 1 and 3–6 inhibited markedly nitric oxide production in lipopolysaccharide-treated RAW 264.7 cells.


Sign in / Sign up

Export Citation Format

Share Document