scholarly journals RWLMod—Potential Model to Study Plant Tolerance in Drought Stress Conditions

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2576
Author(s):  
Florin Sala ◽  
Mihai Valentin Herbei ◽  
Ciprian Rujescu

Rationale: Water loss by evaporation is a normal physiological process, in order to regulate plant temperature. Under conditions of thermal and water stress, water loss is accelerated compared to normal conditions, and the response of plants is variable. In extreme cases, it can lead to wilting and death of plants. It was found that the phenomenon of water loss behaved as a pattern in different plant species, given by two functions, logistics (first part of water loss) and hyperbola (second part of water loss) in relation to a moment m, at which the rate of water loss (RWL) has reached its maximum value. Method: We studied the water loss process for a series of plant samples on different plant species (Picea abies L., H. Karst; Juniperus communis L.; Pinus silvestris L.; Thuja occidentalis L.; Lamium purpureum L.; Veronica hederifolia L.), measuring the rate of weight loss (RWL) in controlled conditions. The drying of the samples was done in identical conditions (thermo-balance, 100 °C, standard temperature for drying the plant samples) with the real-time recording of the drying time simultaneously with the water loss rate (RWL) from the plant samples. The exposure time varied, depending on each species sample, and was approximately 1000 s. Results: The experimental data was recorded at intervals of every 10 s, during the entire drying period. RWL values varied from 0.024 to 0.054 g/min at the beginning of the drying process and reached maximum values after 70–100 s, having values between 0.258 g/min and 0.498 g/min. During the drying period, this indicator presented different graphic evolutions, difficult to be described with a single function. The first segment was described by a logistic function, and the second was described by a hyperbola, resulting in a model (RWLMod) which described the real phenomenon. This model and theoretical calculation were used to quantify the water loss in a time interval and, compared with empirical dates, no significant differences were observed, which indicated an increased degree of accuracy regarding the use of this model. Recommendation and novelty of work: The novelty of the work is given by the obtained model (RWLMod), which makes possible the description of RWL over the entire time interval, and ensures a good fit with the real data. It recommends the method and model in studies of plant behaviour under stress in relation to different influencing factors.

2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Weiqiu Pan ◽  
Tianzeng Li ◽  
Safdar Ali

AbstractThe Ebola outbreak in 2014 caused many infections and deaths. Some literature works have proposed some models to study Ebola virus, such as SIR, SIS, SEIR, etc. It is proved that the fractional order model can describe epidemic dynamics better than the integer order model. In this paper, we propose a fractional order Ebola system and analyze the nonnegative solution, the basic reproduction number $R_{0}$ R 0 , and the stabilities of equilibrium points for the system firstly. In many studies, the numerical solutions of some models cannot fit very well with the real data. Thus, to show the dynamics of the Ebola epidemic, the Gorenflo–Mainardi–Moretti–Paradisi scheme (GMMP) is taken to get the numerical solution of the SEIR fractional order Ebola system and the modified grid approximation method (MGAM) is used to acquire the parameters of the SEIR fractional order Ebola system. We consider that the GMMP method may lead to absurd numerical solutions, so its stability and convergence are given. Then, the new fractional orders, parameters, and the root-mean-square relative error $g(U^{*})=0.4146$ g ( U ∗ ) = 0.4146 are obtained. With the new fractional orders and parameters, the numerical solution of the SEIR fractional order Ebola system is closer to the real data than those models in other literature works. Meanwhile, we find that most of the fractional order Ebola systems have the same order. Hence, the fractional order Ebola system with different orders using the Caputo derivatives is also studied. We also adopt the MGAM algorithm to obtain the new orders, parameters, and the root-mean-square relative error which is $g(U^{*})=0.2744$ g ( U ∗ ) = 0.2744 . With the new parameters and orders, the fractional order Ebola systems with different orders fit very well with the real data.


2013 ◽  
Vol 634-638 ◽  
pp. 4017-4021
Author(s):  
Jun Hui Pan ◽  
Hui Wang ◽  
Xiao Gang Yang

Aiming at the petrophysical facies recognition, a novel identification method based on the weighted fuzzy reasoning networks is proposed in the paper. First, the types and indicators are obtained from core analysis data and the results given by experts, and then the standard patterning database of reservoir petrophysical facies is established. Secondly, by integrating expert experiences and quantitative indicators to reflect the change of petrophysical facies, the classification model of petrophysical facies based on the weighted fuzzy reasoning networks is designed. The preferable application results are presented by processing the real data from the Sabei development zone of Daqing oilfield.


2021 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Payam Teimourzadeh Baboli ◽  
Davood Babazadeh ◽  
Amin Raeiszadeh ◽  
Susanne Horodyvskyy ◽  
Isabel Koprek

With the increasing demand for the efficiency of wind energy projects due to challenging market conditions, the challenges related to maintenance planning are increasing. In this paper, a condition-based monitoring system for wind turbines (WTs) based on data-driven modeling is proposed. First, the normal condition of the WTs key components is estimated using a tailor-made artificial neural network. Then, the deviation of the real-time measurement data from the estimated values is calculated, indicating abnormal conditions. One of the main contributions of the paper is to propose an optimization problem for calculating the safe band, to maximize the accuracy of abnormal condition identification. During abnormal conditions or hazardous conditions of the WTs, an alarm is triggered and a proposed risk indicator is updated. The effectiveness of the model is demonstrated using real data from an offshore wind farm in Germany. By experimenting with the proposed model on the real-world data, it is shown that the proposed risk indicator is fully consistent with upcoming wind turbine failures.


2019 ◽  
Vol 7 (2) ◽  
pp. T255-T263 ◽  
Author(s):  
Yanli Liu ◽  
Zhenchun Li ◽  
Guoquan Yang ◽  
Qiang Liu

The quality factor ([Formula: see text]) is an important parameter for measuring the attenuation of seismic waves. Reliable [Formula: see text] estimation and stable inverse [Formula: see text] filtering are expected to improve the resolution of seismic data and deep-layer energy. Many methods of estimating [Formula: see text] are based on an individual wavelet. However, it is difficult to extract the individual wavelet precisely from seismic reflection data. To avoid this problem, we have developed a method of directly estimating [Formula: see text] from reflection data. The core of the methodology is selecting the peak-frequency points to linear fit their logarithmic spectrum and time-frequency product. Then, we calculated [Formula: see text] according to the relationship between [Formula: see text] and the optimized slope. First, to get the peak frequency points at different times, we use the generalized S transform to produce the 2D high-precision time-frequency spectrum. According to the seismic wave attenuation mechanism, the logarithmic spectrum attenuates linearly with the product of frequency and time. Thus, the second step of the method is transforming a 2D spectrum into 1D by variable substitution. In the process of transformation, we only selected the peak frequency points to participate in the fitting process, which can reduce the impact of the interference on the spectrum. Third, we obtain the optimized slope by least-squares fitting. To demonstrate the reliability of our method, we applied it to a constant [Formula: see text] model and the real data of a work area. For the real data, we calculated the [Formula: see text] curve of the seismic trace near a well and we get the high-resolution section by using stable inverse [Formula: see text] filtering. The model and real data indicate that our method is effective and reliable for estimating the [Formula: see text] value.


Author(s):  
Ronald Manríquez ◽  
Camilo Guerrero-Nancuante ◽  
Felipe Martínez ◽  
Carla Taramasco

The understanding of infectious diseases is a priority in the field of public health. This has generated the inclusion of several disciplines and tools that allow for analyzing the dissemination of infectious diseases. The aim of this manuscript is to model the spreading of a disease in a population that is registered in a database. From this database, we obtain an edge-weighted graph. The spreading was modeled with the classic SIR model. The model proposed with edge-weighted graph allows for identifying the most important variables in the dissemination of epidemics. Moreover, a deterministic approximation is provided. With database COVID-19 from a city in Chile, we analyzed our model with relationship variables between people. We obtained a graph with 3866 vertices and 6,841,470 edges. We fitted the curve of the real data and we have done some simulations on the obtained graph. Our model is adjusted to the spread of the disease. The model proposed with edge-weighted graph allows for identifying the most important variables in the dissemination of epidemics, in this case with real data of COVID-19. This valuable information allows us to also include/understand the networks of dissemination of epidemics diseases as well as the implementation of preventive measures of public health. These findings are important in COVID-19’s pandemic context.


Author(s):  
Liangli Yang ◽  
Yongmei Su ◽  
Xinjian Zhuo

The outbreak of COVID-19 has a great impact on the world. Considering that there are different infection delays among different populations, which can be expressed as distributed delay, and the distributed time-delay is rarely used in fractional-order model to simulate the real data, here we establish two different types of fractional order (Caputo and Caputo–Fabrizio) COVID-19 models with distributed time-delay. Parameters are estimated by the least-square method according to the report data of China and other 12 countries. The results of Caputo and Caputo–Fabrizio model with distributed time-delay and without delay, the integer-order model with distributed delay are compared. These show that the fractional-order model can be better in fitting the real data. Moreover, Caputo order is better in short-term time fitting, Caputo–Fabrizio order is better in long-term fitting and prediction. Finally, the influence of several parameters is simulated in Caputo order model, which further verifies the importance of taking strict quarantine measures and paying close attention to the incubation period population.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. G15-G24 ◽  
Author(s):  
Pejman Shamsipour ◽  
Denis Marcotte ◽  
Michel Chouteau ◽  
Martine Rivest ◽  
Abderrezak Bouchedda

The flexibility of geostatistical inversions in geophysics is limited by the use of stationary covariances, which, implicitly and mostly for mathematical convenience, assumes statistical homogeneity of the studied field. For fields showing sharp contrasts due, for example, to faults or folds, an approach based on the use of nonstationary covariances for cokriging inversion was developed. The approach was tested on two synthetic cases and one real data set. Inversion results based on the nonstationary covariance were compared to the results from the stationary covariance for two synthetic models. The nonstationary covariance better recovered the known synthetic models. With the real data set, the nonstationary assumption resulted in a better match with the known surface geology.


2011 ◽  
Vol 143-144 ◽  
pp. 770-774 ◽  
Author(s):  
Shou Lei Lu ◽  
Long Zhao ◽  
Chang Yun Zhang

In order to solve the problem of the traditional Tercom, which is sensitive to the speed error and yaw angle error, an improved Tercom approach using with fading factor is introduced. The basic idea of this approach is to estimate the navigation position by a novel correlation function. The correlation function is calculated by weighted historical measurements. Experiment results with the real data show that this approach performs better than the traditional Tercom with regard to overcoming velocity error and yaw angle error.


2021 ◽  
Vol 54 (2) ◽  
pp. 123-129
Author(s):  
James C. Fu ◽  
Winnie H. W. Fu

Increasing accuracy of the model prediction on business bankruptcy helps reduce substantial losses for owners, creditors, investors and workers, and, further, minimize an economic and social problem frequently. In this study, we propose a stochastic model of financial working capital and cashflow as a two-dimensional Brownian motion X(t) = (X1(t),X2(t)) on the business bankruptcy prediction. The probability of bankruptcy occurring in a time interval [0,T] is defined by the boundary crossing probability of the two-dimensional Brownian motion entering a predetermined threshold domain. Mathematically, we extend the result in Fu and Wu (2016) on the boundary crossing probability of a high dimensional Brownian motion to an unbounded convex hull. The proposed model is applied to a real data set of companies in US and the numerical results show the proposed method performs well.


Sign in / Sign up

Export Citation Format

Share Document