scholarly journals Biosolid-Amended Soil Enhances Defense Responses in Tomato Based on Metagenomic Profile and Expression of Pathogenesis-Related Genes

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2789
Author(s):  
Evangelia Stavridou ◽  
Ioannis Giannakis ◽  
Ioanna Karamichali ◽  
Nathalie N. Kamou ◽  
George Lagiotis ◽  
...  

Biosolid application is an effective strategy, alternative to synthetic chemicals, for enhancing plant growth and performance and improving soil properties. In previous research, biosolid application has shown promising results with respect to tomato resistance against Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Herein, we aimed at elucidating the effect of biosolid application on the plant–microbiome response mechanisms for tomato resistance against Forl at a molecular level. More specifically, plant–microbiome interactions in the presence of biosolid application and the biocontrol mechanism against Forl in tomato were investigated. We examined whether biosolids application in vitro could act as an inhibitor of growth and sporulation of Forl. The effect of biosolid application on the biocontrol of Forl was investigated based on the enhanced plant resistance, measured as expression of pathogen-response genes, and pathogen suppression in the context of soil microbiome diversity, abundance, and predicted functions. The expression of the pathogen-response genes was variably induced in tomato plants in different time points between 12 and 72 h post inoculation in the biosolid-enriched treatments, in the presence or absence of pathogens, indicating activation of defense responses in the plant. This further suggests that biosolid application resulted in a successful priming of tomato plants inducing resistance mechanisms against Forl. Our results have also demonstrated that biosolid application alters microbial diversity and the predicted soil functioning, along with the relative abundance of specific phyla and classes, as a proxy for disease suppression. Overall, the use of biosolid as a sustainable soil amendment had positive effects not only on plant health and protection, but also on growth of non-pathogenic antagonistic microorganisms against Forl in the tomato rhizosphere and thus, on plant–soil microbiome interactions, toward biocontrol of Forl.

2017 ◽  
Vol 9 (2) ◽  
pp. 162 ◽  
Author(s):  
Juliane Mendes Lemos Blainski ◽  
Argus Cezar da Rocha Neto ◽  
Caroline Luiz ◽  
Márcio José Rossi ◽  
Robson Marcelo Di Piero

Lactic acid bacteria produce several exopolysaccharides (EPS) that may have antimicrobial action and/or induce defense responses in plants. This work aims to evaluate the potential of EPS produced by Lactobacillus plantarum in the protection of tomato plants against bacterial spot caused by Xanthomonas gardneri, as well as to predict the possible mechanisms of action. The EPS were characterized through FTIR and applied at 0; 0.5; 1.5 and 3.0 mg mL-1 in tomato plants with five expanded leaves, followed by the pathogen inoculation after 3 or 7 days. Antimicrobial activity of the biopolymer (1.5 or 10.0 mg mL-1) was evaluated in bioassay when EPS was incorporated into culture medium or embedded in antibiogram disk. The defense mechanisms i.e., total phenolic compounds and flavonoids content, phenylalanine ammonia-lyase (PAL), glutathione reductase (GR) and lipoxygenase (LOX) activities, were measured in tomato plants treated with EPS (1.5 mg mL-1), inoculated or not with X. gardneri. EPS reduced bacterial spot symptoms by up to 72.0% compared to the control. There were no direct effects of EPS on the in vitro growth of X. gardneri. The spectrophotometric profile, ascorbic and ellagic acid concentrations were change in tomato plants after EPS application, in plants challenged with the pathogen. Increases in PAL, GR and LOX activities were observed in plants treated with EPS. Thus, the application of L. plantarum exopolysaccharides can be considered as an effective alternative for controlling bacterial spot in tomato plants. This paper also discusses how these exopolysaccharides reduced the severity of the disease.


2014 ◽  
Vol 80 (6) ◽  
pp. 1864-1873 ◽  
Author(s):  
M. Belén Rubio ◽  
Narciso M. Quijada ◽  
Esclaudys Pérez ◽  
Sara Domínguez ◽  
Enrique Monte ◽  
...  

ABSTRACTTrichoderma parareeseiandTrichoderma reesei(teleomorphHypocrea jecorina) produce cellulases and xylanases of industrial interest. Here, the anamorphic strain T6 (formerlyT. reesei) has been identified asT. parareesei, showing biocontrol potential against fungal and oomycete phytopathogens and enhanced hyphal growth in the presence of tomato exudates or plant cell wall polymers inin vitroassays. ATrichodermamicroarray was used to examine the transcriptomic changes in T6 at 20 h of interaction with tomato plants. Out of a total 34,138Trichodermaprobe sets deposited on the microarray, 250 showed a significant change of at least 2-fold in expression in the presence of tomato plants, with most of them being downregulated.T. parareeseiT6 exerted beneficial effects on tomato plants in terms of seedling lateral root development, and in adult plants it improved defense againstBotrytis cinereaand growth promotion under salt stress. Time course expression patterns (0 to 6 days) observed for defense-related genes suggest that T6 was able to prime defense responses in the tomato plants against biotic and abiotic stresses. Such responses undulated, with a maximum upregulation of the jasmonic acid (JA)/ethylene (ET)-relatedLOX1andEIN2genes and the salt toleranceSOS1gene at 24 h and that of the salicylic acid (SA)-relatedPR-1gene at 48 h after T6 inoculation. Our study demonstrates that theT. parareeseiT6-tomato interaction is beneficial to both partners.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enrico Battiston ◽  
Stéphane Compant ◽  
Livio Antonielli ◽  
Vincenzo Mondello ◽  
Christophe Clément ◽  
...  

Grapevine trunk diseases (GTDs) are a serious and growing threat to vineyards worldwide. The need for innovative control tools persists since pesticides used against some GTDs have been banned and only methods to prevent infections or to reduce foliar symptoms have been developed so far. In this context, the application of imaging methods, already applied to study plant–microbe interactions, represents an interesting approach to understand the effect of experimental treatments applied to reduce fungal colonization, on GTD-related pathogens activity. To this aim, trials were carried out to evaluate the efficacy of copper-based treatments, formulated with hydroxyapatite (HA) as co-adjuvant with innovative delivery properties, loaded with two different copper(II) compounds (tribasic sulfate and sulfate pentahydrate), and applied to grapevine propagation material to inhibit fungal wood colonization. The treated rootstock (Vitis berlandieri × Vitis riparia cv. K5BB) and scion cuttings (Vitis vinifera L., cv. Chardonnay) had been inoculated with a strain of Phaeoacremonium minimum (Pmi) compared to uninoculated rootstocks. Experimental treatments were applied during the water-soaking process, comparing the copper(II) compounds pure or formulated with HA, to hydrate the cuttings. After callusing, grafted vines were grown under greenhouse conditions in a nursery and inoculated with Pmi::gfp7 or with Pmi wild-type. Fifteen weeks post-inoculation, woody tissues close to the inoculation site were sampled to evaluate the efficiency of the treatments by studying the plant–microbe interaction by confocal laser scanning microscopy (CLSM). Copper and further elements were also quantified in the same tissues immediately after the treatments and on the CLSM samples. Finally, the grapevine defense responses were studied in the leaves of cuttings treated with the same formulations. The present investigation confirmed the relevant interaction of Pmi and the related transformed strain on the vascular tissues of grafted vines. Furthermore, in vitro assay revealed (i) the fungistatic effect of HA and the reduced effect of Cu fungicide when combined with HA. In planta assays showed (ii) the reduction of Pmi infection in propagation material treated with HA-Cu formulations, (iii) the movement of HA-Cu formulations inside the plant tissues and their persistence over time, and (iv) the plant defense reaction following the treatment with pure HA or Cu, or combined.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 626 ◽  
Author(s):  
María E. Morán-Diez ◽  
Eduardo Tranque ◽  
Wagner Bettiol ◽  
Enrique Monte ◽  
Rosa Hermosa

Trichoderma species are well known biocontrol agents that are able to induce responses in the host plants against an array of abiotic and biotic stresses. Here, we investigate, when applied to tomato seeds, the potential of Trichoderma strains belonging to three different species, T. parareesei T6, T. asperellum T25, and T. harzianum T34, to control the fully pathogenic strain Pseudomonas syringae pv. tomato (Pst) DC3000, able to produce the coronatine (COR) toxin, and the COR-deficient strain Pst DC3118 in tomato plants, and the molecular mechanisms by which the plant can modulate its systemic defense. Four-week old tomato plants, seed-inoculated, or not, with a Trichoderma strain, were infected, or not, with a Pst strain, and the changes in the expression of nine marker genes representative of salicylic acid (SA) (ICS1 and PAL5) and jasmonic acid (JA) (TomLoxC) biosynthesis, SA- (PR1b1), JA- (PINII and MYC2) and JA/Ethylene (ET)-dependent (ERF-A2) defense pathways, as well as the abscisic acid (ABA)-responsive gene AREB2 and the respiratory burst oxidase gene LERBOH1, were analyzed at 72 hours post-inoculation (hpi) with the bacteria. The significant increase obtained for bacterial population sizes in the leaves, disease index, and the upregulation of tomato genes related to SA, JA, ET and ABA in plants inoculated with Pst DC3000 compared with those obtained with Pst DC3118, confirmed the COR role as a virulence factor, and showed that both Pst and COR synergistically activate the JA- and SA-signaling defense responses, at least at 72 hpi. The three Trichoderma strains tested reduced the DC3118 levels to different extents and were able to control disease symptoms at the same rate. However, a minor protection (9.4%) against DC3000 was only achieved with T. asperellum T25. The gene deregulation detected in Trichoderma-treated plus Pst-inoculated tomato plants illustrates the complex system of a phytohormone-mediated signaling network that is affected by the pathogen and Trichoderma applications but also by their interaction. The expression changes for all nine genes analyzed, excepting LERBOH1, as well as the bacterial populations in the leaves were significantly affected by the interaction. Our results show that Trichoderma spp. are not adequate to control the disease caused by fully pathogenic Pst strains in tomato plants.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Xianfu Yuan ◽  
Shan Hong ◽  
Wu Xiong ◽  
Waseem Raza ◽  
Zongzhuan Shen ◽  
...  

Abstract Background The development of suppressive soils is a promising strategy to protect plants against soil-borne diseases in a sustainable and viable manner. The use of crop rotation and the incorporation of plant residues into the soil are known to alleviate the stress imposed by soil pathogens through dynamics changes in soil biological and physicochemical properties. However, relatively little is known about the extent to which specific soil amendments of plant residues trigger the development of plant-protective microbiomes. Here, we investigated how the incorporation of pineapple residues in soils highly infested with the banana Fusarium wilt disease alleviates the pathogen pressure via changes in soil microbiomes. Results The addition of above- and below-ground pineapple residues in highly infested soils significantly reduced the number of pathogens in the soil, thus resulting in a lower disease incidence. The development of suppressive soils was mostly related to trackable changes in specific fungal taxa affiliated with Aspergillus fumigatus and Fusarium solani, both of which displayed inhibitory effects against the pathogen. These antagonistic effects were further validated using an in vitro assay in which the pathogen control was related to growth inhibition via directly secreted antimicrobial substances and indirect interspecific competition for nutrients. The disease suppressive potential of these fungal strains was later validated using microbial inoculation in a well-controlled pot experiment. Conclusions These results mechanistically demonstrated how the incorporation of specific plant residues into the soil induces trackable changes in the soil microbiome with direct implications for disease suppression. The incorporation of pineapple residues in the soil alleviated the pathogen pressure by increasing the relative abundance of antagonistic fungal taxa causing a negative effect on pathogen growth and disease incidence. Taken together, this study provides a successful example of how specific agricultural management strategies can be used to manipulate the soil microbiome towards the development of suppressive soils against economically important soil-borne diseases.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xiangli Yan ◽  
Aiming Yu ◽  
Haozhen Zheng ◽  
Shengxin Wang ◽  
Yingying He ◽  
...  

Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion. Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22) and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with ischemic stroke.


2011 ◽  
Vol 101 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Brantlee Spakes Richter ◽  
Kelly Ivors ◽  
Wei Shi ◽  
D. M. Benson

Wood-based mulches are used in avocado production and are being tested on Fraser fir for reduction of Phytophthora root rot, caused by Phytophthora cinnamomi. Research with avocado has suggested a role of microbial cellulase enzymes in pathogen suppression through effects on the cellulosic cell walls of Phytophthora. This work was conducted to determine whether cellulase activity could account for disease suppression in mulch systems. A standard curve was developed to correlate cellulase activity in mulches with concentrations of a cellulase product. Based on this curve, cellulase activity in mulch samples was equivalent to a cellulase enzyme concentration of 25 U ml–1 or greater of product. Sustained exposure of P. cinnamomi to cellulase at 10 to 50 U ml–1 significantly reduced sporangia production, but biomass was only reduced with concentrations over 100 U ml–1. In a lupine bioassay, cellulase was applied to infested soil at 100 or 1,000 U ml–1 with three timings. Cellulase activity diminished by 47% between 1 and 15 days after application. Cellulase applied at 100 U ml–1 2 weeks before planting yielded activity of 20.08 μmol glucose equivalents per gram of soil water (GE g–1 aq) at planting, a level equivalent to mulch samples. Cellulase activity at planting ranged from 3.35 to 48.67 μmol GE g–1 aq, but no treatment significantly affected disease progress. Based on in vitro assays, cellulase activity in mulch was sufficient to impair sporangia production of P. cinnamomi, but not always sufficient to impact vegetative biomass.


2014 ◽  
Vol 81 (1) ◽  
pp. 432-440 ◽  
Author(s):  
T. Sotelo ◽  
M. Lema ◽  
P. Soengas ◽  
M. E. Cartea ◽  
P. Velasco

ABSTRACTGlucosinolates (GSLs) are secondary metabolites found inBrassicavegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about theirin vitrobiocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enrichedBrassicacrops on suppressingin vitrogrowth of two bacterial (Xanthomonas campestrispv. campestris andPseudomonas syringaepv. maculicola) and two fungal (AlternariabrassicaeandSclerotiniascletoriorum)Brassicapathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of differentBrassicaspecies, have potential to inhibit pathogen growth and offer new opportunities to study the use ofBrassicacrops in biofumigation for the control of multiple diseases.


2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


Sign in / Sign up

Export Citation Format

Share Document