scholarly journals The Effect of Cultivation Practices on Agronomic Performance, Elemental Composition and Isotopic Signature of Spring Oat (Avena sativa L.)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 169
Author(s):  
Aleš Kolmanič ◽  
Lovro Sinkovič ◽  
Marijan Nečemer ◽  
Nives Ogrinc ◽  
Vladimir Meglič

The present study investigated the effects of cultivation practices on grain (oats) yield and yield components, such as straw yield, harvest index, thousand kernel weight, and plant lodging. In addition, multi-element composition and isotopic signature (δ13C, δ15N) of the oat grains were studied. The spring oat cultivar ‘Noni’ was grown in a long-term field experiment during 2015–2020, using three management practices: control without organic amendment, incorporation of manure every third year and incorporation of crop residues/cover crop in the rotation. Synthetic nitrogen (N) (0, 55, 110 and 165 kg/ha) was applied during oat development in each system. Multi-element analysis of mature grains from two consecutive years (2016 and 2017) was performed using EDXRF spectroscopy, while stable isotope ratios of carbon (C) and nitrogen (N) were obtained using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA/IRMS). The results show how cultivation practices affect yield components and isotopic and elemental signatures. Increasing the N rate improved both the oat grain and straw yields and increased susceptibility to lodging. The results show how the elemental content (Si, Ca, Zn, Fe, Ti, Br and Rb) in the oat grains were influenced by intensification, and a noticeable decrease in elemental content at higher N rates was the result of a dilution effect of increased dry matter production. The mean δ15N values in oat grains ranged from 2.5‰ to 6.4‰ and decreased with increasing N rate, while δ13C values ranged from −29.9‰ to –28.9‰. Based on the δ15N values, it was possible to detect the addition of synthetic N above an N rate of 55 kg/ha, although it was impossible to differentiate between different management practices using stable isotopes.

Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P < 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.


2013 ◽  
Vol 5 (2) ◽  
pp. 91-96
Author(s):  
MR Sultana ◽  
MA Alim ◽  
MB Hossain ◽  
S Karmaker ◽  
MS Islam

An experiment was conducted at Agronomy Field Laboratory of Rajshahi University to evaluate the effect of variety and weeding regime on yield and yield components of wheat. Four varieties viz. Prodip -V1, Gourab -V2, Shatabdi -V3, Bijoy -V4 and five weeding regime viz. a) No weeding -W0, b) Weed free -W1, c) One hand weeding at 20 DAS -W2, d) Two hand weeding (1st at 20 DAS and 2nd at 42 DAS) -W3 and e) Lintur 70 WG @ 250 g ha-1 -W4 were included as treatments in the experiment. The experiment was laid out in a Split-plot Design with three replications. The results revealed that Prodip produced the highest grain yield (5.33 t ha-1) followed by Gourab (4.85 t ha-1), while the lowest grain yield (3.98 t ha-1) was obtained from Shatabdi. The highest grain yield (5.09 t ha-1) was obtained in Weed free (W1) followed by W3 (Two hand weeding) (4.89 t ha-1) and the lowest grain yield (4.13 t ha-1) was obtained in no weeding treatment (W0). The highest grain yield (5.64 t ha-1) was obtained from the combination of Prodip and weed free treatment (V1W1) and the lowest (3.57 t ha-1) was obtained from the combination between Shatabdi and no weeding treatment (V4W0).DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14800 J. Environ. Sci. & Natural Resources, 5(2): 91-96 2012


2004 ◽  
Vol 84 (4) ◽  
pp. 1025-1036 ◽  
Author(s):  
William E. May ◽  
Ramona M. Mohr ◽  
Guy P. Lafond ◽  
Adrian M. Johnston ◽  
F. Craig Stevenson

The proportion of oat (Avena sativa L.) being used for race horses and human consumption has increased over the past 15 yr. The objective of this study was to evaluate the effects of N, seeding date and cultivar on grain yield components, grain yield and grain quality of oat under a direct seeding system. Four N rates, three seeding dates and two cultivars were tested at Indian Head, Melfort, and Canora, SK, and Brandon, MB. Yield was more responsive to increasing N rates from 15 and 80 kg ha-1 when oat was seeded in early May versus early June. Panicles plant-1 was the yield component that accounted for most of the yield increase achieved from increasing rates of N, while kernel weight was the yield component that decreased as the rate of N increased. Physical seed quality decreased (plump seed decreased and thin seed increased) with delayed seeding and greater N fertilizer rates. Nitrogen fertilizer and seeding date had a much larger effect on the quality of CDC Pacer than AC Assiniboia. Combining early seeding, appropriate N fertility and well-adapted cultivars should increase the likelihood of optimizing oat yield and quality necessary for high-value markets. Key words: Avena sativa L., yield components, test weight, lodging, plump seed, thin seed


2021 ◽  
Author(s):  
Maira R. Duffeck ◽  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Alyssa Collins ◽  
Philip J. Jensen ◽  
...  

Fusarium graminearum is the main causal species of Fusarium head blight (FHB) globally. Recent changes in the trichothecene (toxin) types in the North American FHB pathogens support the need for continued surveillance. In this study, 461 isolates were obtained from symptomatic spikes of wheat, spelt, barley, and rye crops during 2018 and 2019. These were all identified to species and toxin types using molecular-based approaches. An additional set of 77 F. graminearum isolates obtained from overwintering crop residues during Winter 2012 were molecularly identified to toxin types. A subset of 31 F. graminearum isolates (15 15ADON and 16 3ADON) were assessed for mycelial growth, macroconidia, perithecia, and ascospore production, and sensitivity to two triazole fungicides. Ninety percent of isolates obtained from symptomatic spikes (n = 418) belonged to F. graminearum, with another four species found at a lower frequency (n = 39). F. graminearum isolates from symptomatic spikes were mainly of the 15ADON (95%), followed by 3ADON (4%), NIV (0.7%), and NX-2 (0.3%) toxin types. All F. graminearum isolates obtained from overwintering residue were of the 15ADON type. Toxin types could not be differentiated based on multivariate analysis of growth and reproduction traits. All isolates were sensitive to tebuconazole and metconazole fungicides in vitro. This study confirms the dominance of F. graminearum and suggests ecological and environmental factors that lead to similar composition of toxin types in Northern U.S. Our results are useful to assess the sustainability of FHB management practices and provide a baseline for future FHB surveys.


2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


Weed Science ◽  
2019 ◽  
Vol 68 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Margaret R. McCollough ◽  
Eric R. Gallandt ◽  
Heather M. Darby ◽  
Thomas Molloy

AbstractWeeds remain the foremost production challenge for organic small grain farmers in the northeastern United States. Instead of crops sown in narrow, single-line rows, band sowing offers a more uniform spatial arrangement of the crop, maximizing interspecific while reducing intraspecific competition. Weeds in the inter-band zone are controlled by cultivating with aggressive sweeps; tine harrowing can target weeds in both intra- and inter-band zones. Field experiments in Maine and Vermont in 2016 and 2017 evaluated band sowing for improved weed control, crop yield, and grain quality in organic spring barley (Hordeum vulgare L. ‘Newdale’). Specifically, we compared: (1) the standard practice of sowing 16.5-cm rows at a target crop density of 325 plants m−2, (2) narrow-row sowing with increased crop density, (3) wide-row sowing with interrow hoeing, and (4) band sowing both with and (5) without inter-band hoeing. Mustard (Sinapis alba L. ‘Ida Gold’) was planted throughout the experiment as a surrogate weed. Compared with the standard practice, band sowing with hoeing reduced surrogate weed density on average by 45% across site-years. However, effects on weed biomass and yield were inconsistent, perhaps due to suboptimal timing of hoeing and adverse weather conditions. In 1 out of 4 site-years, band sowing with hoeing reduced surrogate weed biomass by 67% and increased crop yield compared with the standard treatment. Results also indicate that band sowing with hoeing may improve 1,000-kernel weight and plump kernel grain-quality parameters.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1208
Author(s):  
Tahir Mahmood ◽  
Muhammad Abdullah ◽  
Sunny Ahmar ◽  
Muhammad Yasir ◽  
Muhammad Shahid Iqbal ◽  
...  

Interrogations of local germplasm and landraces can offer a foundation and genetic basis for drought tolerance in wheat. Potential of drought tolerance in a panel of 30 wheat genotypes including varieties, local landraces, and wild crosses were explored under drought stress (DS) and well-watered (WW) conditions. Considerable variation for an osmotic adjustment (OA) and yield components, coupled with genotype and environment interaction was observed, which indicates the differential potential of wheat genotypes under both conditions. Reduction in yield per plant (YP), thousand kernel weight (TKW), and induction of OA was detected. Correlation analysis revealed a strong positive association of YP with directly contributing yield components under both environments, indicating the impotence of these traits as a selection-criteria for the screening of drought-tolerant genotypes for drylands worldwide. Subsequently, the association of OA with TKW which contributes directly to YP, indicates that wheat attains OA to extract more water from the soil under low water-potential. Genotypes including WC-4, WC-8 and LLR-29 showed more TKW under both conditions, among them; LLR-29 also has maximum OA and batter yield comparatively. Result provides insight into the role of OA in plant yield sustainability under DS. In this study, we figure out the concept of OA and its incredible role in sustainable plant yield in wheat.


2004 ◽  
Vol 55 (7) ◽  
pp. 797 ◽  
Author(s):  
D. L. Sharma ◽  
W. K. Anderson

Small grains that pass through a 2-mm slotted screen (sievings or screenings) are one of the most important causes of price dockages of wheat in Australia because grain size variation greatly affects flour yield and commercial value. The aims of this study were to examine the effects of season, time of sowing, plant population, and applied nitrogen, and their interactions with cultivars, on small grain screenings. Twenty-one field experiments involving 16 new cultivars and elite crossbreds, and various management variables, were conducted in the medium (annual rainfall 325–450 mm) and low (annual rainfall <325 mm) rainfall zones of the Northern Agricultural Region of Western Australia over 3 diverse cropping seasons (1999–2001). Rainfall events towards the end of the season were critical to the level of screenings. Screenings were higher in season 2000 with terminal drought stress, but were low in 2001 despite severe drought stress during early growth. Delayed seeding caused higher screenings in 1999 (average rainfall with even distribution) and in 2000 (terminal drought) but not consistently in 2001 when early drought stress restricted tillering and spike size thereby constraining the yield level. Strong varietal and time of sowing interactions were evident but the relationship between maturity group and the level of screenings was not consistent. Rather, the ability of cultivars to adjust yield components was more important; 82% of the total variance in small grain screenings was accounted for by a regression model based on variety-specific kernel weight, post-heading rainfall (from about 2 weeks before anthesis), and location factors. The effect of increasing plant population on screenings was mostly negative, with some minor exceptions for a few cultivars in the low-rainfall zone. As applied nitrogen was increased, screenings generally increased and cultivar influenced this trend more than rainfall zone. It is postulated that for a cultivar to be unaffected by applied nitrogen, it should have inherently higher grain weight as well as high stability of grain weight across nitrogen levels. Applied nitrogen had a significant effect on screenings only at higher plant populations. In experiments where the level of screenings exceeded 5%, the yield components that were significantly associated with screenings, in order of relative importance, were grain weight > grain number/area > grain number/head > grain yield. Cultivars differed in production of screenings in response to plant population, nitrogen fertiliser and sowing time. Harrismith was the most sensitive cultivar and Wyalkatchem was overall the most tolerant cultivar. Delayed seeding had the least effect on the screenings of cultivars Westonia, Carnamah, and Wyalkatchem. Carnamah was the most stable cultivar against higher levels of applied nitrogen, whereas Westonia required high plant numbers to contain screenings. It is concluded that cultivars can be classified according to specific sensitivities, and appropriate management practices may be suggested to growers.


2010 ◽  
Vol 61 (6) ◽  
pp. 503 ◽  
Author(s):  
K. G. Pembleton ◽  
D. J. Donaghy ◽  
J. J. Volenec ◽  
R. S. Smith ◽  
R. P. Rawnsley

Understanding which component has the greatest influence on yield is vital when managing lucerne (Medicago sativa) crops to maximise the production of high-quality forage. However, both yield components and plant morphology are affected by interactions between environment conditions and plant genetics. Field experiments across three environments (dryland at Cambridge: 500 mm annual rainfall, brown sodosol soil type; dryland at Elliott: 1200 mm annual rainfall, red ferrosol soil type; and irrigated at Elliott) in Tasmania, Australia were undertaken to investigate the yield, yield components and plant morphology of four lucerne cultivars; DuPuits, Grasslands Kaituna, SARDI 7 and SARDI 10 under cutting. The effect of cultivar on dry matter (DM) yield was different in each environment, with Grasslands Kaituna achieving the highest yield (P < 0.05) in dryland environments, while no difference in DM yield among cultivars (P > 0.05) occurred under irrigation. Stepwise linear regression consistently confirmed mass per shoot as the yield component with the greatest influence on DM yield for all cultivars and environments. Shoot density also had an influence on DM yield in two of the three environments. DuPuits had the highest leaf : stem ratio in all three environments and slower morphological development in two of the environments. Management practices across all environments and cultivars should aim to increase mass per shoot to maximise yield. Of the cultivars examined Grasslands Kaituna is the most appropriate for dryland conditions in Tasmania, while all cultivars examined were suited to production under irrigation.


2004 ◽  
Vol 84 (2) ◽  
pp. 431-442 ◽  
Author(s):  
W. E. May ◽  
R. M. Mohr ◽  
G. P. Lafond ◽  
A. M. Johnston ◽  
F. C. Stevenson

Demand for high quality oat (Avena sativa L.) for consumption by humans and race horses has increased, leading to increased oat production on the Canadian prairies. Little information exists on the best management practices for producing high-quality, high-yielding oat using direct seeding systems and cropping practices developed and adopted over the past 15 yr. The objective of this study was to determine the effect of early seeding on grain yield and quality of oat cultivars currently grown in the eastern prairie region. Four seeding dates and four cultivars were tested at Indian Head, Melfort, and Brandon over 3 yr. Moving the seeding date from mid-June to early May increased oat yield, seeds per panicle, kernel weight, test weight and plump seed by 76, 33, 10, 13 and 11%, respectively, when averaged across all locations and years. This increase in yield and quality was probably due to improved environmental conditions and a reduction in crown rust infection (Puccina coronata Corda). Crown rust has a larger effect on seed yield and quality as one moves east and south from Melfort, Saskatchewan, and as seeding was delayed from early May. Early seeding of oat decreases the risk of obtaining low yield and/or quality, and should be considered a best management practice for growing milling oats, especially in the southeastern prairies of Canada. Key words: Yield components, test weight, oat, Puccina coronata, lodging, plump seed, thin seed


Sign in / Sign up

Export Citation Format

Share Document