scholarly journals Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1211
Author(s):  
Simone Cantamessa ◽  
Nadia Massa ◽  
Elisa Gamalero ◽  
Graziella Berta

Phytoremediation is a promising green technique for the restoration of a polluted environment, but there is often a gap between lab and field experiments. The fern, Pteris vittata L., can tolerate a high soil arsenic concentration and rapidly accumulate the metalloid in its fronds. Arbuscular mycorrhizal fungi (AMF) are mutualistic fungi that form a symbiosis with most land plants’ roots, improve their growth, and induce stress tolerance. This paper reports the results obtained using P. vittata inoculated with AMF, to extract Arsenic (As) from an industrial site highly contaminated also by other pollutants. Two experiments have been performed. In the first one, AMF colonized ferns were grown for two years under controlled conditions in soil coming from the metallurgic site. Positive effects on plant health and As phytoextraction and accumulation were detected. Then, considering these results, we performed a three year in situ experiment in the industrial site, to assess the remediation of As at two different depths. Our results show that the colonization of P. vittata with AMF improved the remediation process of As with a significant impact on the depth 0–0.2 m.

Author(s):  
M.-Miao Xie, Q.-Sheng Wu

Arbuscular mycorrhizal fungi (AMF) represent positive effects on growth performance, nutrient absorption and stressed tolerance of host plants, whereas it is not clear whether AMF can affect flowering traits of ornamental plants. In this work, Diversispora spurca, D. versiformis, and Funneliformis mosseae were applied to rhizosphere of potted hyacinth (Hyacinths orientalis L. Anna Marie) plants. After four months of mycorrhizal inoculation, root could be colonized by exogenous AMF species, varied from 38% to 49%, whilst F. mosseae had the best mycorrhizal status. Out of these AMF species used, only F. mosseae-inoculated plants recorded greater raceme length and biomass production of single flowerlet, raceme, and flower stem. F. mosseae also induced the flowering earlier in 2 days and prolonged flowering time for 3 days. D. versiformis postponed 2 days for flowering. Mycorrhizal plants recorded considerably higher acetic acid (IAA) and zeatin riboside (ZR) levels in flowers, irrespective of AMF species. F. mosseae-inoculated plants had significantly higher methyl jasmonate (MeJA) concentrations in flowers than other AMF- or non-AMF-treated plants. These results thereby conclude that F. mosseae can be used to regulate flowering of H. orientalis L. Anna Marie, including flowering earlier and prolonging flowering time, which is closely associated with IAA, ZR and MeJA levels in flowers.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 567 ◽  
Author(s):  
Jinping Wang ◽  
Huini Zhong ◽  
Lingjun Zhu ◽  
Yingdan Yuan ◽  
Linhao Xu ◽  
...  

The Chinese honey locust tree Gleditsia sinensis Lam. (Fabaceae) is a precious ecological and economic tree species that has wide-ranging usage. However, knowledge regarding seedling cultivation (especially the use of arbuscular mycorrhizal fungi (AMF)) is scarce, which limits the developent of Gleditsia plantations. A pot experiment was carried out under greenhouse conditions to estimate the effects of three AMF strains (Funneliformis mosseae 1, Funneliformis mosseae 2, and Diversispora tortuosa) on the growth, photosynthetic rate, and nutrient content of G. sinensis seedlings. Results showed that the growth parameters (seedling height, basal diameter, dry biomass) of the seedlings were significantly increased by each of the three AMF strains, associated with high root colonization rates (greater than 75%). Chlorophyll concentrations and photosynthetic rates were also increased by AMF, and phosphorus (P), and potassium (K) content in the three organs (leaf, stem, and root), and nitrogen (N) content in the leaf and stem of arbuscular mycorrhizal (AM) seedlings were significantly higher than in non-AM seedlings. Mycorrhizal dependency of the AM seedlings was greater than 350%, and significantly correlated with the increased P and K content in all three organs and increased N content in the leaf and stem. Positive effects of F. mosseae on growth and the nutrient content of seedlings were higher than those of D. tortuosa, but no significant different effects on G. sinensis seedlings were observed between the two strains of F. mosseae. Hence, growth of G. sinensis seedlings was effectively enhanced by AMF, with F. mosseae being more suitable for the inoculation of G. sinensis seedlings. These results indicate that arbuscular mycorrhization is beneficial for the growth of young G. sinensis plants. Further research is needed to determine whether the effects can be reproduced in a forest situation.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 186 ◽  
Author(s):  
Jinping Wang ◽  
Zhiyuan Fu ◽  
Qiong Ren ◽  
Linjun Zhu ◽  
Jie Lin ◽  
...  

Salinity is the primary restriction factor for vegetation conservation and the rehabilitation of coastal areas in Eastern China. Arbuscular mycorrhizal fungi (AMF) have been proved to have the ability to alleviate salt stress in plants. However, the role of AMF in relieving salt stress among indigenous trees species is less well known, limiting the application of AMF in the afforestation of local area. In this study, a salt-stress pot experiment was conducted to evaluate the effects of AMF on Zelkova serrata (Thunb.) Makino, a tree species with significant potential for afforestation of coastal area. The Z. serrata seedlings inoculated with three AMF strains (Funneliformis mosseae 1, Funneliformis mosseae 2, and Diversispora tortuosa) were subjected to two salt treatments (0 and 100 mM NaCl) under greenhouse conditions. The results showed that the three AMF strains had positive effects, to a certain extent, on plant growth and photosynthesis under normal condition. However, only F. mosseae 1 and F. mosseae 2 alleviated the inhibition of growth, photosynthesis, and nutrient uptake of Z. serrata seedlings under salt stress. The two AMF strains mitigated salt-induced adverse effects on seedlings mainly by increasing the leaf photosynthetic ability and biomass accumulation by reducing Na+ content, increasing P, K+, and Mg2+ content, as well as by enhancing photosynthetic pigments content and the stomatal conductance of leaves. These results indicated that AMF inoculation is a promising strategy for the afforestation of coastal areas in Eastern China.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Haishui Yang ◽  
Yajun Dai ◽  
Xiaohua Wang ◽  
Qian Zhang ◽  
Liqun Zhu ◽  
...  

Naturally, simultaneous interactions occurred among plants, herbivores, and soil biota, that is, arbuscular mycorrhizal fungi (AMF), nematodes, and fungal pathogens. These multiple interactions play fundamental roles in driving process, structure, and functioning of ecosystems. In this study, we conducted a meta-analysis with 144 papers to investigate the interactions between AMF and plant biotic stressors and their effects on plant growth performance. We found that AMF enhanced plant tolerance to herbivores, nematodes, and fungal pathogens. We also found reciprocal inhibition between AMF and nematodes as well as fungal pathogens, but unidirectional inhibition for AMF on herbivores. Negative effects of AMF on biotic stressors of plants depended on herbivore feeding sites and actioning modes of fungal pathogens. More performance was reduced in root-feeding than in shoot-feeding herbivores and in rotting- than in wilt-fungal pathogens. However, no difference was found for AMF negative effects between migratory and sedentary nematodes. In return, nematodes and fungal pathogens generated more reduction of root colonization in Non-Glomeraceae than in Glomeraceae. Our results suggested that AMF positive effects on plants might be indirectly mediated by competitive inhibition with biotic stressors of plants. These positive and negative interactions make potential contributions to maintaining ecosystem stability and functioning.


2019 ◽  
Author(s):  
Alicia Franco ◽  
Jesús Pérez-Moreno ◽  
Gabriela Sánchez ◽  
Carlos R. Cerdán ◽  
Juan J. Almaraz ◽  
...  

AbstractTraditionally, it is thought that arbuscular mycorrhizae establish a mutualist symbiosis only with the roots of angiosperm plants. In this mutualism, fungi receive carbon from the plants, and angiosperms receive nutrients through the external mycelium of the arbuscular mycorrhizal fungi (AMF). However, the enhanced contents of macro- and micronutrients in gymnosperm plants, and therefore the mutualistic relationship, with AMF has not been reported so far. The present work evaluated whether arbuscular mycorrhizae were able to establish and enhance 9 nutrient contents in the neotropical Pinaceae species Pinus greggii. The tree seedlings were inoculated with three consortia of AMF isolated from an agricultural site, a forest of Cupressus lusitanica and a forest of Pinus hartwegii. The effect of AMF inoculation on plant growth and nutrient enhancement, in addition to colonization, was evaluated. There was evidence of enhancement of plant growth and 9 macro- and micronutrients in plants inoculated with the three evaluated consortia. After 7 months, the translocation was greater for Mg, Mn and Zn in plants inoculated with the consortium of AMF from pine forest. The presence of hyphae, vesicles and arbuscules was detected in the roots of the Pinus greggii plants inoculated with the AMF consortia. In addition to these positive effects, colonization of 10 to 15% and 20 to 38% was observed depending on the AMF consortia after 2 and 7 months, respectively. The presence of arbuscules which is the translocation structure among involved symbionts was also recorded; and photographed for the first time. In the present work, we report for the first time that arbuscular mycorrhiza affects the mobilization of N, P, K, Ca, Mg, Fe, Mn, Zn, Cu and B in gymnosperms, indicating that this mycorrhizal symbiosis is more complex than previously believed.


Sign in / Sign up

Export Citation Format

Share Document