scholarly journals Growth and Bioactive Compound Content of Glehnia littoralis Fr. Schmidt ex Miquel Grown under Different CO2 Concentrations and Light Intensities

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1581
Author(s):  
Hye Ri Lee ◽  
Hyeon Min Kim ◽  
Hyeon Woo Jeong ◽  
Myung Min Oh ◽  
Seung Jae Hwang

This study aims to determine the effect of different CO2 concentrations and light intensities on the growth, photosynthetic rate, and bioactive compound content of Glehnia littoralis Fr. Schmidt ex Miquel in a closed-type plant production system (CPPS). The plants were transplanted into a deep floating technique system with recycling nutrient solution (EC 1.0 dS·m-1 and pH 6.5) and cultured for 96 days under a temperature of 20 ± 1 °C, a photoperiod of 12/12 h (light/dark), and RGB LEDs (red:green:blue = 7:1:2) in a CPPS. The experimental treatments were set to 500 or 1500 µmol∙mol−1 CO2 concentrations in combination with one of the three light intensities: 100, 200, or 300 µmol∙m−2∙s−1 photosynthetic photon flux density (PPFD). The petiole length of G. littoralis was the longest in the 500 µmol∙mol−1 CO2 concentration with the 100 µmol∙m−2∙s−1 PPFD. The fresh weight (FW) and dry weight (DW) of shoots and roots were the heaviest in the 300 µmol∙m−2∙s−1 PPFD regardless of the CO2 concentration. Higher CO2 concentrations and light intensities produced the greatest photosynthetic rates. However, the SPAD value was not significantly different between the treatments. Higher light intensities produced greater content per biomass of chlorogenic acid and total saponin, although the concentration per DW or FW was not significantly different between treatments. The first and second harvest yields were the greatest in the 300 µmol∙m−2∙s−1 PPFD, regardless of the CO2 concentration. These results show that the 300 µmol∙m−2∙s−1 PPFD enhanced the growth, photosynthetic rate, and bioactive compound accumulation of G. littoralis, regardless of the CO2 concentration in a CPPS.

HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 757-763 ◽  
Author(s):  
Meijun Zhang ◽  
Duanduan Zhao ◽  
Zengqiang Ma ◽  
Xuedong Li ◽  
Yulan Xiao

Momordica grosvenori plantlets were cultured in vitro for 26 d on sucrose- and hormone-free Murashige and Skoog (MS) medium with four levels of photosynthetic photon flux density (PPFD), namely 25, 50, 100, or 200 μmol·m−2·s−1, and a CO2 concentration of 1000 μmol·mol−1 in the culture room [i.e., photoautotrophic micropropagation (PA) treatments]. The control treatment was a photomixotrophic culture using MS medium containing sucrose and NAA with a CO2 concentration of 400 μmol·mol−1 in the culture room and a PPFD of 25 μmol·m−2·s−1. Based on the results, a second experiment was conducted to investigate the effects of α-naphthaleneacetic acid (NAA) and sucrose on callus formation. For this, plantlets were grown in the absence and presence of either NAA or sucrose. Compared with the control, the PA plantlet had a well-developed rooting system, better shoot, greater chlorophyll content, and higher electron transport rate and the ex vitro survival percentage was increased by 31%. Both sucrose and NAA stimulated callus formation on the shoot bases of control plantlets, whereas calluses did not form on the plantlets grown in sucrose- and hormone-free medium. The stronger light intensities increased the fresh and dry weight of plantlets. A PPFD of 100 μmol·m−2·s−1 was more suitable for the growth of M. grosvenori plantlets. Therefore, photoautotrophic plantlets grown at high light intensities would be better suited to the intense irradiance found in sunlight.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maral Hosseinzadeh ◽  
Sasan Aliniaeifard ◽  
Aida Shomali ◽  
Fardad Didaran

Abstract Biomass partitioning is one of the pivotal determinants of crop growth management, which is influenced by environmental cues. Light and CO2 are the main drivers of photosynthesis and biomass production in plants. In this study, the effects of CO2 levels: ambient 400 ppm (a[CO2]) and elevated to 1,000 ppm (e[CO2]) and different light intensities (75, 150, 300, 600 μmol·m−2·s−1 photosynthetic photon flux density – PPFD) were studied on the growth, yield, and biomass partitioning in chrysanthemum plants. The plants grown at higher light intensity had a higher dry weight (DW) of both the vegetative and floral organs. e[CO2] diminished the stimulating effect of more intensive light on the DW of vegetative organs, although it positively influenced inflorescence DW. The flowering time in plants grown at e[CO2] and light intensity of 600 μmol·m−2·s−1 occurred earlier than that of plants grown at a[CO2]. An increase in light intensity induced the allocation of biomass to inflorescence and e[CO2] enhanced the increasing effect of light on the partitioning of biomass toward the inflorescence. In both CO2 concentrations, the highest specific leaf area (SLA) was detected under the lowest light intensity, especially in plants grown at e[CO2]. In conclusion, elevated light intensity and CO2 direct the biomass toward inflorescence in chrysanthemum plants.


2020 ◽  
Vol 48 (4) ◽  
pp. 2244-2262
Author(s):  
Maryam ESMAILI ◽  
Sasan ALINIAEIFARD ◽  
Mahmoud MASHAL ◽  
Parisa GHORBANZADEH ◽  
Mehdi SEIF ◽  
...  

Carbon dioxide (CO2) and light intensity are the two main environmental drivers known to play important roles in crop growth and yield. In the current study, lettuce seedlings were exposed to four different light intensities [(75, 150, 300 and 600 Photosynthetic Photon Flux Density (PPFD)] and four different concentrations of CO2 (400, 800, 1200 and 1600 ppm). By increasing light intensity and CO2 concentration growth parameters such as fresh weight, dry weight and leaf area were stepwise increased from 75 to 300 PPFD and from 400 ppm to 1200 ppm CO2 concentration. Maximum fresh weight was observed in 300 PPFD under both 1200 ppm and 1600 ppm CO2 concentrations. Highest dry weight was obtained in plants exposed to 300 and 600 PPFD under both 1200 and 1600 ppm CO2 concentrations. Highest leaf area was detected in 300 PPFD under both 1200 and 1600 ppm CO2 concentrations. Widest stomatal pore aperture was detected in 600 PPFD under 400 ppm and 800 ppm CO2 concentrations. Evapotranspiration increased in a light intensity and CO2 concentration-dependent manner; higher light intensity or higher CO2 concentration, more evapotranspiration. Highest water use efficiency (WUE) was achieved in plants exposed to 300 PPFD under 1200 ppm CO2 concentration. In conclusion, to achieve best growth performance and WUE, lettuce should be produced under 300 PPFD light intensity and 1200 ppm CO2.


2020 ◽  
Vol 30 (5) ◽  
pp. 564-569
Author(s):  
Claudia Elkins ◽  
Marc W. van Iersel

Seedlings may be grown indoors where environmental conditions can be precisely controlled to ensure consistent and reliable production. The optimal spectrum for production under sole-source lighting is currently unknown. Far-red light (λ = 700–800 nm) typically is not a significant part of the spectrum of light-emitting diode (LED) grow lights. However, far-red light is photosynthetically active and can enhance leaf elongation, which may result in larger leaves and increased light interception. We hypothesized that adding far-red light to sole-source lighting would increase the growth of ‘Dalmatian Peach’ foxglove (Digitalis purpurea) seedlings grown under white LED lights, potentially shortening production times. Our objective was to evaluate the effect of far-red light intensities, ranging from 4.0 to 68.8 µmol·m−2·s−1, on the growth and morphology of foxglove seedlings. Foxglove seedlings were grown in a growth chamber with a photosynthetic photon flux density (PPFD) of 186 ± 6.4 μmol·m−2·s−1 and supplemental far-red light intensities ranging from 4.0 to 68.8 µmol·m−2·s−1. As far-red light increased, shoot dry weight, root dry weight, plant height, and plant height/number of leaves increased by 38% (P = 0.004), 20% (P = 0.029), 38% (P = 0.025), and 34% (P = 0.024), respectively, while root weight fraction decreased 16% (P = 0.034). Although we expected supplemental far-red light to induce leaf and/or stem expansion, specific leaf area and compactness (two measures of morphology) were unaffected. Because a 37% increase in total photon flux density (PPFD plus far-red light) resulted in a 34.5% increase in total plant dry weight, the increased growth likely was due to increased photosynthesis rather than a shade-acclimation response. The growth response was linear across the 4.0 to 68.8 µmol·m−2·s−1 range of far-fed light tested, so we were unable to determine a saturating far-red photon flux density.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Xiaonan Shi ◽  
Ricardo Hernández ◽  
Mark Hoffmann

Commercial strawberry (Fragaria ×ananassa Duch.) plants propagate through the development of stolons (runners) with attached daughter plants. While it is known that temperature and photoperiod affect strawberry propagation, little knowledge exists on whether cultural methods may influence stolon and daughter plant development. The objective of this study was to characterize the impact of three stolon removal treatments on the development of daughter plants in the ever-bearing strawberry ‘Albion’. Treatments included 1) stolon removal every 7 days, nine times total; 2) stolon removal every 21 days, three times total; and 3) one-time stolon removal after 63 days. Strawberry plants were grown in a controlled environment (26 °C, 507 μmol⋅m–2⋅s–1 photosynthetic photon flux density, 14-hour photoperiod) in soilless media and fertilized with a customized nutrient solution. Mother plants in the 63-day treatment produced more daughter plants (102 per plant), than in the 21-day treatment (33 per plant) and the 7-day treatment (16 per plant). In the 63-day treatment, daughter plants and stolons accumulated to 86.6% of the total biomass, to 42.9% in the 7-day treatment and to 60.6% of total biomass in the 21-day treatment. Mother plant organs (including roots, crown, and leaves) had less dry weight in the 63-day treatment compared with the 7-day treatment and 21-day treatment, respectively. Furthermore, the daughter plants produced at the 63-day treatment had smaller crown diameters (0.65 cm) and less dry weight (0.51 g) and a higher number of fully expanded leaves (2.9) and visible roots (13.4) compared with the 21-day treatment and the 7-day treatment. The results of this study show daughter plant production of strawberry plants declines significantly with shorter stolon removal intervals, indicating the need to adjust stolon removal in strawberry nurseries for optimal daughter plant production.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 65-67 ◽  
Author(s):  
Astrid Kubatsch ◽  
Heiner Grüneberg ◽  
Christian Ulrichs

Schefflera arboricola was held in light- and temperature-controlled chambers for 6 months under three light intensities of 10 μmol·m–2·s–1, 20 μmol·m–2·s–1, and 80 μmol·m–2·s–1 measured as photon flux density (PFD). Plants also received three temperature regimes: 15 °C, 20 °C, and 25 °C. Reduced light intensity significantly decreased fresh and dry weight and increased chlorophyll content, but did not affect leaf thickness and palisade and spongy mesophyll parenchyma. High temperatures reduced fresh weight and significantly increased chlorophyll content and leaf thickness. The authors conclude that reduced photosynthetic energy flow at low light intensities (10 μmol·m–2·s–1, 20 μmol·m–2·s–1) could not be buffered by a downregulation of energy-consuming processes. Therefore the life span and quality of S. arboricola is reduced at such PFD values, especially at higher temperatures. Plants lose their marketability within 6 months.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1603
Author(s):  
Ernesto Olvera-Gonzalez ◽  
Nivia Escalante-Garcia ◽  
Deland Myers ◽  
Peter Ampim ◽  
Eric Obeng ◽  
...  

Different strategies are reported in the literature for energy saving in Closed Plant Production Systems (CPPS). However, not reliable evidences about energy consumption with the use of pulsed LED light technique in lighting system available in Plant Factory and Vertical Farm. In this work, three key points to determine the effects of pulsed LED light versus continuous LED light are presented: (1) A mathematical model and its practical application for stabilizing the energy equivalence using LED light in continuous and pulsed mode in different light treatments. (2) The quantum efficiency of the photosystem II was used to determine positive and/or negative effects of the light operating mode (continuous or pulsed) on chili pepper plants (Capsicum annuum var. Serrano). (3) Evaluation of energy consumption with both operation modes using ten recipes from the literature to grow plants applied in Closed Plant Production Systems, different Photosynthetic Photon Flux Density at 50, 110, and 180 µmol m−2 s−1, Frequencies at 100, 500, and 1000 Hz, and Duty Cycles of 40, 50, 60, 70, 80, and 90%. The results show no significant statistical differences between the operation modes (continuous and pulsed LED light). For each light recipe analyzed, a pulsed frequency and a duty cycle were obtained, achieving significant energy savings in every light intensity. The results can be useful guide for real-life applications in CPPS.


2012 ◽  
Vol 30 (1) ◽  
pp. 28-34
Author(s):  
Frank P. Henning ◽  
Timothy J. Smalley ◽  
Orville M. Lindstrom ◽  
John M. Ruter

We investigated the influences of fall fertilization and light intensity on photosynthesis and freeze resistance of Rhododendron ×kurume ‘Pink Pearl’, an evergreen azalea cultivar, grown outdoors in containers under nursery conditions. The study included two main-plot fall fertilization treatments: 1) 0.5 liter solution containing 75 mg·liter−1 N applied for 60 days from August 1 through September 29 and 2) 0.5 liter solution containing 125 mg·liter−1 N applied for 120 days from August 1 through November 28, and four subplot light intensity treatments 1) 100% ambient photon flux density (PPFD) from May 1, 2004, through May 1, 2005, 2) shade fabric rated to reduce PPFD by 50% from May 1 through September 30, 2004, followed by 100% PPFD from October 1, 2004, through May 1, 2005, 3) 100% PPFD from May 1 through September 30, 2004, followed by 50% PPFD from October 1, 2004, through May 1, 2005, and 4) 50% PPFD from May 1, 2004, through May 1, 2005. Fertilizer application and shade treatments did not interact in their effects on stem freeze resistance or the timing of anthesis. The high rate of extended fertigation (125 mg·liter−1 N applied August 1 through September 28) reduced freeze resistance of azalea stems and advanced anthesis by 4.9 days compared to plants that received moderate fertigation (75 mg·liter−1 N from August 1 through September 29). The high rate of extended fall fertigation failed to increase leaf or stem dry weight compared to plants that received the moderate rate of fertigation. Plants grown in 50% PPFD from May 1 through September 30 produced 163% more above ground dry weight compared to plants grown in 100% light during the same time period. The addition or removal of shade cloth beginning October 1 failed to enhance azalea stem freeze resistance compared to plants that were only exposed to 100 or 50% PPFD respectively. Shade treatments affected the chlorophyll fluorescence ratio (Fv · Fm−1) of leaves, but leaf fluorescence was unrelated to stem freeze resistance. Shade treatments affected azalea growth and photosynthetic stress, but shade neither interacted with fall fertilization to increase stem freeze resistance, nor had a biologically significant effect on stem freeze resistance.


Sign in / Sign up

Export Citation Format

Share Document