scholarly journals Enhanced Flexibility of Biodegradable Polylactic Acid/Starch Blends Using Epoxidized Palm Oil as Plasticizer

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 977 ◽  
Author(s):  
Raina Awale ◽  
Fathilah Ali ◽  
Azlin Azmi ◽  
Noor Puad ◽  
Hazleen Anuar ◽  
...  

The brittleness of polylactic acid (PLA) has always limited its usage, although it has good mechanical strength. In this study, flexibility of PLA/starch (PSt) blend was enhanced using epoxidized palm oil (EPO) as the green plasticizer. The PLA/starch/EPO (PSE) blends were prepared while using the solution casting method by fixing the content of starch and varying ratio of EPO. The thermal properties, such as glass transition temperature (Tg), melting temperature (Tm), and crystallization temperature (Tcc) were decreased by increasing the amount of EPO into PSt, indicating that EPO increases the chain mobility. Thermogravimetric analysis (TGA) showed that thermal degradation resistance of PSE was higher when compared to PSt. The mechanical testing revealed that EPO at all contents improved the mechanical properties, such as increment of the elongation-at-break and impact strength. Whereas, dynamic mechanical analysis showed that the addition of filler into PLA decreased the storage modulus of PLA. The carbonyl group of the aliphatic ester remained the same in the PSE blends. The morphological study verified the ductility of PSE blends surface when compared to the brittle surface of PSt. As for the soil burial tests, EPO accelerated the degradation of blends. From these results, it can be concluded that EPO improved the flexibility of PLA blends.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xuetao Shi ◽  
Guangcheng Zhang ◽  
Cristina Siligardi ◽  
Guido Ori ◽  
Andrea Lazzeri

PLA nanocomposites with stearate coated precipitated calcium carbonate (PCC) and halloysite natural nanotubes (HNT) were prepared by melt extrusion. The crystallization behavior, mechanical properties, thermal dynamical mechanical analysis (DMTA), and the morphology of the PCC/PLA, HNT/PLA, and HNT/PCC/PLA composites were discussed. Compared to halloysite nanotubes, PCC nanoparticles showed a better nucleating effect, which decreased both the glass transition and cold crystallization temperatures. The tensile performance of PLA composites showed that the addition of inorganic nanofillers increased Young’s modulus but decreased tensile strength. More interestingly, PLA composites with PCC particles exhibited an effectively increased elongation at break with respect to pure PLA, while HNT/PLA showed a decreased ultimate deformation of composites. DMTA results indicated that PLA composites had a similar storage modulus at temperatures below the glass transition and the addition of nanofillers into PLA causedTgto shift to lower temperatures by about 3°C. The morphological analysis of fractures surface of PLA nanocomposites showed good dispersion of nanofillers, formation of microvoids, and larger plastic deformation of the PLA matrix when the PCC particles were added, while a strong aggregation was noticed in composites with HNT nanofillers, which has been attributed to a nonoptimal surface coating.


2013 ◽  
Vol 812 ◽  
pp. 236-240
Author(s):  
Mohd Zaki Nurul Ayunie ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

The effects of epoxidized palm oil (EPO) content in carbon black filled styrene butadiene rubber (SBR) on tensile strength, elongation at break and crosslink density were investigated. Five different loadings of EPO in parts per hundred rubbers (phr) were used to test the tensile strength of the carbon black filled SBR which showed a decreasing trend as the content of EPO in the vulcanizates increased. In contrast, elongation at break showed the opposite trend where the elongation at break increased as the content of the EPO increased. The SBR vulcanizates with the highest content of EPO gave the highest value of elongation at break which is 2393.56%. In the case of swelling index, it was found to increase as the amount of EPO increased.


2014 ◽  
Vol 11 (2) ◽  
pp. 57 ◽  
Author(s):  
Buong Woei Chieng ◽  
Nor Azowa Ibrahim ◽  
Wan Md Zin Wan Yunus ◽  
Mohd Zobir Hussein

Poly(lactic acid) (PLA)-based nanocomposites filled with graphene nanoplatelets (xGnP) that contains epoxidized palm oil (EPO) as plasticizer were prepared by melt blending method. PLA was first plasticized by EPO to improve its flexibility and thereby overcome its problem of brittleness. Then, xGnP was incoporated into plasticized PLA to enhance its mechanical properties. Plasticized and nanofilled PLA nanocomposites (PLA/EPO/xGnP) showed improvement in the elongation at break by 3322% and 61% compared to pristine PLA and PLA/EPO, respectively. The use of EPO and xGnP increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The nanocomposites also resulted in an increase of up to 26.5% in the tensile strength compared with PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO/xGnP nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. Plasticized PLA reinforced with xGnP showed that increasing the xGnP content triggers a substantial increase in thermal stability. Crystallinity of the nanocomposites as well as cold crystallization and melting temperature did not show any significant changes upon addition of xGnP. However, there was a significant decrease of glass transition temperature up to 0.3wt% of xGnP incorporation. The TEM micrograph of PLA/EPO/xGnP shows that the xGnP was uniformly dispersed in the PLA matrix and no obvious aggregation was observed.


2013 ◽  
Vol 812 ◽  
pp. 216-220 ◽  
Author(s):  
Mohd Nasir Anis Nazurah ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

Epoxidized palm oil (EPO) can act as processing oil has the potential of non toxic, degradable, renewable resource and as the alternative safe process oils in rubber compounding. Epoxidized palm oil is used as some of additives in rubber compounding to provide function of softener or stabiliser thus, improve properties of rubber compounding performance. Rubber that is used in this study is styrene butadiene rubber (SBR); a synthetic rubber copolymer consisting of styrene and butadiene. SBR also has good abrasion resistance and good aging stability when protected by additives. Compared to natural rubber, SBR has better processability, heat aging and abrasion resistance but inferior elongation, hot tear strength, hysteresis, resilience and tensile strength. This study is focusing on the effect of EPO without the addition of carbon black into the compound via tensile and density test. This is very important as to study the physical and mechanical interaction between SBR and EPO without the influence of other fillers. Different loading of oil were used at 25 pphr, 30 pphr. 35 pphr, 40 pphr and 45 pphr in the compounding process as processing aid. EPO35 which contain 35 pphr of EPO shows the highest value of tensile strength which is 2.2 MPa. The vulcanizate that contain 30 pphr of EPO shows the highest value for Youngs modulus which is 0.22 MPa while the elongation at break increased as the oil loading increased. The highest value for density is 0.979 g/cm3 for the vulcanizate contain 25 pphr of EPO. The results indicates that EPO is potential to replace other processing oils as renewable resource and safe to human.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Henry C. Obasi ◽  
Isaac O. Igwe ◽  
Innocent C. Madufor

Polypropylene (PP)/plasticized cassava starch (PCS) blended with and without compatibilizer (polypropylene-graft-maleic anhydride (PP-g-MA)) via melt blending were prepared for soil burial which lasted for 90 days. Plasticized starch loadings of 0, 10, 20, 30, 40, and 50 wt.% were used, while pp-g-ma was used at 10 wt.% based on starch weight. The PP/PCS and PP/PCS/PP-G-MA blends were evaluated for their tensile properties. It was observed that the tensile strength, elongation at break, and young’s modulus decreased with increases in soil burial time as well as starch content for PP/PCS blends. Similar treads for the tensile properties were observed for PP/PCS/PP-g-MA, but with higher properties as compared to uncompatibilized blends. However, the tensile properties for both PP/PCS and PP/PCS/PP-g-Ma decrease with increases in starch loading and also as the burial period progressed.


2014 ◽  
Vol 606 ◽  
pp. 89-92 ◽  
Author(s):  
Syazeven Effatin Azma Mohd Asri ◽  
Zainoha Zakaria ◽  
Azman Hassan ◽  
Mohamad Kassim Mohamad Haafiz

The market share of biodegradable polymers from renewable sources has grown rapidly in the plastic industry. Properties of the polymers from renewable resources can be enhanced through blending and composite formation. Fermented chitin is a by-product in a bacterial prawn waste fermentation for protein recovery which has undergone mild chemical treatment producing treated fermented chitin (TFC). TFC was further acid hydrolysed to produce chitin nanowhiskers (TFCNW). The chitin nanowhiskers was used as filler in polylactic acid (PLA) through solution casting method. Atomic Force Microscopy showed TFCNW particles are uniformly dispersed in PLA matrix but tends to agglomerate as TFCNW loading increased. Tensile strength of the biocomposite film increased up to 12.4 MPa at 2 phr TFCNW which it decreased with further addition of TFCNW. The Young’s modulus increased with increasing of TFCNW content up to 3.69 GPa. However, elongation at break of the biocomposite film decreased by 66 % upon addition of TFCNW when compared to pure PLA.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1953
Author(s):  
Mingtao Sun ◽  
Shuang Huang ◽  
Muhuo Yu ◽  
Keqing Han

The melt blending of polylactic acid (PLA) and thermoplastic silicone polyurethane (TPSiU) elastomer was performed to toughen PLA. The molecular structure, crystallization, thermal properties, compatibility, mechanical properties and rheological properties of the PLA/TPSiU blends of different mass ratios (100/0, 95/5, 90/10, 85/15 and 80/20) were investigated. The results showed that TPSiU was effectively blended into PLA, but no chemical reaction occurred. The addition of TPSiU had no obvious effect on the glass transition temperature and melting temperature of PLA, but slightly reduced the crystallinity of PLA. The morphology and dynamic mechanical analysis results demonstrated the poor thermodynamic compatibility between PLA and TPSiU. Rheological behavior studies showed that PLA/TPSiU melt was typically pseudoplastic fluid. As the content of TPSiU increased, the apparent viscosity of PLA/TPSiU blends showed a trend of rising first and then falling. The addition of TPSiU had a significant effect on the mechanical properties of PLA/TPSiU blends. When the content of TPSiU was 15 wt%, the elongation at break of the PLA/TPSiU blend reached 22.3% (5.0 times that of pure PLA), and the impact strength reached 19.3 kJ/m2 (4.9 times that of pure PLA), suggesting the favorable toughening effect.


Author(s):  
Hazleen Anuar ◽  
Mohd Syafiq Razali ◽  
Hafizul Adzim Saidin ◽  
Ammelia Fazlina Badrul Hisham ◽  
Siti Nur E’zzati Mohd Apandi ◽  
...  

This research investigates the effects of plasticizer and durian skin fibre (DSF) loading on tensile and morphological properties of polylactic acid (PLA) biocomposites. Epoxidized palm oil (EPO) was added as a plasticizer in this project. The effect of EPO content 0–10 wt% was investigated over the tensile properties of PLA. EPO at 5 wt% was found to provide the highest tensile properties on PLA biocomposite. The plasticized PLA was then investigated for the effect of DSF content by varying the DSF at 1, 3 and 5 wt%. The tensile properties improved by about 7% with 3 wt% DSF. Scanning electron micrograph revealed that a ductile failure was induced in PLA composite with 5 wt% EPO and 3 wt% DSF.


Sign in / Sign up

Export Citation Format

Share Document