scholarly journals Chiral MnIII (Salen) Immobilized on Organic Polymer/Inorganic Zirconium Hydrogen Phosphate Functionalized with 3-Aminopropyltrimethoxysilane as an Efficient and Recyclable Catalyst for Enantioselective Epoxidation of Styrene

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 212 ◽  
Author(s):  
Xiaochuan Zou ◽  
Yue Wang ◽  
Cun Wang ◽  
Kaiyun Shi ◽  
Yanrong Ren ◽  
...  

Organic polymers/inorganic zirconium hydrogen phosphate (ZSPP, ZPS-IPPA, and ZPS-PVPA) functionalized with 3-aminopropyltrimethoxysilane were prepared and used to support chiral MnIII (salen) complexes (Jacobsen’s catalyst). Different characterization methods demonstrated that the chiral MnIII (salen) complexes was successfully supported on the surface of the carrier (ZSPP, ZPS-IPPA, or ZPS-PVPA) through a 3-aminopropyltrimethoxysilane group spacer. The supported catalysts effectively catalyzed epoxidation of styrene with m-chloroperbenzoic acid (m-CPBA) as an oxidant in the presence of N-methylmorpholine N-oxide (NMO) as an axial base. These results (ee%, 53.3–63.9) were significantly better than those achieved under a homogeneous counterpart (ee%, 46.2). Moreover, it is obvious that there was no significant decrease in catalytic activity after the catalyst 3 was recycled four times (cons%: from 95.0 to 92.6; ee%: from 64.7 to 60.1). Further recycles of catalyst 3 resulted in poor conversions, although the enantioselectivity obtained was still higher than that of corresponding homogeneous catalyst even after eight times. After the end of the eighth reaction, the solid catalyst was allowed to stand in 2 mol/L of dilute hydrochloric acid overnight, prompting an unexpected discovery that the catalytic activity of the catalyst was recovered again at the 9th and 10th cycles of the catalyst.

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 706
Author(s):  
Gianluigi Albano ◽  
Claudio Evangelisti ◽  
Laura Antonella Aronica

Supported catalysts are important tools for developing green-economy-based processes. Palladium nanoparticles (NPs) that are immobilized on two fibers developed as metal scavengers (i.e., Smopex®-234 and Smopex®-111, 1% w/w) have been prepared and tested in copper-free cyclocarbonylative Sonogashira reactions. Their catalytic activity has been compared with that of a homogeneous catalyst (i.e., PdCl2(PPh3)2). Pd/Smopex®-234 showed high activity and selectivity in the synthesis of functionalized heterocycles, such as phthalans and isochromans, even when working with a very low amount of palladium (0.2–0.5 mol%). The extension of Pd/Smopex®-234 promoted cyclocarbonylative reactions to propargyl and homopropargyl amides afforded the corresponding isoindoline and dihydrobenzazepine derivatives. A preliminary test on Pd NPs leaching into the solution (1.7 × 10−3 mg) seems to indicate that, at the end of the reaction, almost all of the active metal is present on the fiber surface.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3525
Author(s):  
Leslie Trigoura ◽  
Yalan Xing ◽  
Bhanu P. S. Chauhan

In this review, we present an assessment of recent advances in alkyne functionalization reactions, classified according to different classes of recyclable catalysts. In this work, we have incorporated and reviewed the activity and selectivity of recyclable catalytic systems such as polysiloxane-encapsulated novel metal nanoparticle-based catalysts, silica–copper-supported nanocatalysts, graphitic carbon-supported nanocatalysts, metal organic framework (MOF) catalysts, porous organic framework (POP) catalysts, bio-material-supported catalysts, and metal/solvent free recyclable catalysts. In addition, several alkyne functionalization reactions have been elucidated to demonstrate the success and efficiency of recyclable catalysts. In addition, this review also provides the fundamental knowledge required for utilization of green catalysts, which can combine the advantageous features of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis.


2017 ◽  
Vol 5 (42) ◽  
pp. 22163-22169 ◽  
Author(s):  
Baolong Zhou ◽  
Liangzhen Liu ◽  
Pingwei Cai ◽  
Guang Zeng ◽  
Xiaoqiang Li ◽  
...  

Two nitrogen-rich porous organic polymers (POPs) were prepared via Schiff base chemistry. Carbonization of these POPs results in porous carbon nanohybrids which exhibit excellent catalytic activity toward the oxygen reduction reaction (ORR).


2005 ◽  
Vol 494 ◽  
pp. 363-368 ◽  
Author(s):  
D. Lončarević ◽  
Ž. Čupić

Poly(4-vinylpyridine-co-divinylbenzene)-Co2+ was characterized using infrared spectroscopy (IR), thermogravimetric analysis (TG-DTA), N2-physisorption and polarography. Thermal analysis suggests sufficient thermal stability of the polymer support, under reaction conditions. From polarography measurements, the Co2+ content on polymer-supported catalysts is estimated and it was proved that no significant leaching occurred during the activity tests. At the molecular level, FTIR of P4VP-DVB-Co2+ reveals that the pyridine nitrogen lone pair coordinates to the metal center in the polymeric complex. The obtained P4VP-DVB-Co2+ catalysts performed interesting catalytic activity in reaction of the cyclohexane oxidation with air, indicating that increasing Co2+ content lowers the initiation temperature and raises the decomposition of cyclohexylhydroperoxide.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 548 ◽  
Author(s):  
Kunlanan Kiatkittipong ◽  
Muhammad Amirul Amin Mohamad Shukri ◽  
Worapon Kiatkittipong ◽  
Jun Wei Lim ◽  
Pau Loke Show ◽  
...  

Carbon dioxide (CO2) has been anticipated as an ideal carbon building block for organic synthesis due to the noble properties of CO2, which are abundant renewable carbon feedstock, non-toxic nature, and contributing to a more sustainable use of resources. Several green and proficient routes have been established for chemical CO2 fixation. Among the prominent routes, this review epitomizes the reactions involving cycloaddition of epoxides with CO2 in producing cyclic carbonate. Cyclic carbonate has been widely used as a polar aprotic solvent, as an electrolyte in Li-ion batteries, and as precursors for various forms of chemical synthesis such as polycarbonates and polyurethanes. This review provides an overview in terms of the reaction mechanistic pathway and recent advances in the development of several classes of catalysts, including homogeneous organocatalysts (e.g., organic salt, ionic liquid, deep eutectic solvents), organometallic (e.g., mono-, bi-, and tri-metal salen complexes and non-salen complexes) and heterogeneous supported catalysts, and metal organic framework (MOF). Selection of effective catalysts for various epoxide substrates is very important in determining the cycloaddition operating condition. Under their catalytic systems, all classes of these catalysts, with regard to recent developments, can exhibit CO2 cycloaddition of terminal epoxide substrates at ambient temperatures and low CO2 pressure. Although highly desired conversion can be achieved for internal epoxide substrates, higher temperature and pressure are normally required. This includes fatty acid-derived terminal epoxides for oleochemical carbonate production. The production of fully renewable resources by employment of bio-based epoxy with biorefinery concept and potential enhancement of cycloaddition reactions are pointed out as well.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 492 ◽  
Author(s):  
Wilhemina Sebati ◽  
Suprakas Ray

Porous organic polymers (POPs) are of growing research interest owing to their high surface areas, stabilities, controllable chemical configurations, and tunable pore volumes. The molecular nanoarchitecture of POP provides metal or metal oxide binding sites, which is promising for the development of advanced heterogeneous catalysts. This article highlights the development of numerous kinds of POPs and key achievements to date, including their functionalization and incorporation of nanoparticles into their framework structures, characterization methods that are predominantly in use for POP-based materials, and their applications as catalysts in several reactions. Scientists today are capable of preparing POP-based materials that show good selectivity, activity, durability, and recoverability, which can help overcome many of the current environmental and industrial problems. These POP-based materials exhibit enhanced catalytic activities for diverse reactions, including coupling, hydrogenation, and acid catalysis.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36600-36607 ◽  
Author(s):  
Yizhu Lei ◽  
Zaifei Chen ◽  
Guangxing Li

A palladium/phosphorus-functionalized porous organic polymer with tunable surface wettability was successfully prepared. The catalyst displayed high catalytic activity for the water-mediated Suzuki–Miyaura coupling reaction of aryl chlorides.


2013 ◽  
Vol 483 ◽  
pp. 38-41
Author(s):  
Shu Heng Liu

Take Waugh-Type (NH4)6[MnMo9O32] •8H2O absorbed on diatomite and prepared supported solid catalyst. The properties of the catalyst were studied through the synthesis of benzyl acetate. The appropriate reaction conditions were obtained by orthogonal test: mole ratio of acetic acid to benzyl alcohol was 2.5:1.0, the catalyst dosage was 1.6g, the water carrying agent toluene dosage was 2.5ml, reaction time was 150min, esterification yield was 87.4%. The catalyst are high catalytic activity and non- polluting, and could be reused.


Sign in / Sign up

Export Citation Format

Share Document