scholarly journals Effect of Graphene Oxide Coating on Natural Fiber Composite for Multilayered Ballistic Armor

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1356 ◽  
Author(s):  
Ulisses Oliveira Costa ◽  
Lucio Fabio Cassiano Nascimento ◽  
Julianna Magalhães Garcia ◽  
Sergio Neves Monteiro ◽  
Fernanda Santos da Luz ◽  
...  

Composites with sustainable natural fibers are currently experiencing remarkably diversified applications, including in engineering industries, owing to their lower cost and density as well as ease in processing. Among the natural fibers, the fiber extracted from the leaves of the Amazonian curaua plant (Ananas erectifolius) is a promising strong candidate to replace synthetic fibers, such as aramid (Kevlar™), in multilayered armor system (MAS) intended for ballistic protection against level III high velocity ammunition. Another remarkable material, the graphene oxide is attracting considerable attention for its properties, especially as coating to improve the interfacial adhesion in polymer composites. Thus, the present work investigates the performance of graphene oxide coated curaua fiber (GOCF) reinforced epoxy composite, as a front ceramic MAS second layer in ballistic test against level III 7.62 mm ammunition. Not only GOCF composite with 30 vol% fibers attended the standard ballistic requirement with 27.4 ± 0.3 mm of indentation comparable performance to Kevlar™ 24 ± 7 mm with same thickness, but also remained intact, which was not the case of non-coated curaua fiber similar composite. Mechanisms of ceramic fragments capture, curaua fibrils separation, curaua fiber pullout, composite delamination, curaua fiber braking, and epoxy matrix rupture were for the first time discussed as a favorable combination in a MAS second layer to effectively dissipate the projectile impact energy.

2011 ◽  
Vol 471-472 ◽  
pp. 291-296 ◽  
Author(s):  
Piyush P. Gohil ◽  
A.A. Shaikh

Composites are becoming essential part of today’s material because they offer advantages such as low weight, corrosion resistance, high fatigue strength; faster assembly etc. composites are generating curiosity and interest all over the worlds. The attempts can be found in literature for composite materials high strength fiber and also natural fiber like jute, flax and sisal natural fibers provides data but there is need of experimental data availability for unidirectional natural fiber composite with seldom natural fiber like cotton, palm leaf etc., it can provide a feasible range of alternative materials to suitable conventional material. It was decided to carry out the systematic experimental study for the effect of volume fraction of reinforcement on longitudinal strength as well as Modulus of Elasticity (MOE) using developed mould-punch set up and testing aids. The testing is carried out as per ASTM D3039/3039M-08. The comparative assessment of obtained experimental results with literature is also carried out, which forms an important constituent of present work. It is also observed through SEM images and theoretical investigations that interface/interphase plays and important role in natural fiber composite.


2005 ◽  
Vol 297-300 ◽  
pp. 1529-1533
Author(s):  
Jae Kyoo Lim ◽  
Jun Hee Song ◽  
Jun Yong Choi ◽  
Hyo Jin Kim

In recent years, the use of natural fibers as reinforcements in polymer composites to replace synthetic fibers like glass is presently receiving increasing attention. Because of their increasing use combined with high demand, the cost of thermosetting resin has increased rapidly over the past decades. However the widely used synthetic fillers such as glass fiber are very expensive compared to natural fibers. Natural fiber-reinforced thermosetting composites are more economized to produce than the original thermosetting. Moreover the use of natural fiber in thermosetting composites is highly beneficial, because the use of natural fibers will be increased. In this study, a bamboo fiber-reinforced thermoplastic composite that made the RTM was evaluated to mechanical properties.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mallika Datta ◽  
Debasish Das ◽  
Devarun Nath

Purpose The study aims to review the literatures on the effect of fiber length on the mechanical response of natural fiber composite will help the researchers to know about the perspective of the various natural fibers in making of composite concerning fiber length. The review summarized the work of the other researchers, thereby unambiguously précised suitability of a specific natural fiber for a matrix in use. Thus, one can identify the use of the same fibers–matrix combination to obtain composites with different properties with the control of fiber/matrix interface. Design/methodology/approach The review work proposes a new kind of diagrammatic representation that expresses the influence of fiber length. This work has not been explored before in this specific format. The chronology of work may help to select natural fibers for use in composites for a specific matrix. Findings The length of the fiber perception in terms of “critical” length decides the need for pre-treatment process of natural fiber to improve shear stress at the interface for various matrices. Originality/value The current review paper attempts to shed light on the association between the fiber length of natural fiber and the mechanical response of natural fiber composite. Moreover, it probes the concepts of critical fiber length as a persuadable factor.


2015 ◽  
Vol 1115 ◽  
pp. 349-352 ◽  
Author(s):  
Md. Masudur R. Abir ◽  
S.M. Kashif ◽  
Md. Abdur Razzak

To achieve sustainability in the composite industry, natural fibers must be able to replace synthetic fibers .In this work the tensile properties of sisal fibers were determined. The relationships between tensile strength, young modulus, failure to strain and gage length was studied. Also variation in tensile strength was quantified using statistical analysis. The relationship between Weibull statistics and gage length were also investigated. The strength of the sisal fiber obtained in this work was between 255-377 MPA and decreased with an increase in gage length. The Weibull modulus obtained was similar for all gage lengths and was around 2.5.


2018 ◽  
Vol 22 (3) ◽  
pp. 525-550 ◽  
Author(s):  
ES Zaini ◽  
MD Azaman ◽  
MS Jamali ◽  
KA Ismail

Researchers have worked on variety of natural fibers reinforced with polymer composites using different parameters to come up with various recommendations. The investigation involved aspects of composition materials and mechanical properties of natural fiber composites. The satisfactory results of natural fiber composites have encouraged researchers to delve deeper into the abilities of natural fiber composite in the form of a core structure. The potentiality of utilizing natural fiber composite in core design has wide potential in modern industries. This paper presents a review on natural fibers and polymer matrices commonly used in core fabrication, core design, fabricating processes of cores, and mechanical properties of cores. Ongoing research of rice husk composites to be fabricated in the form of honeycomb core structures is also discussed.


Author(s):  
Muhamad Fitri ◽  
S. Mahzan ◽  
Fajar Anggara

Indonesia has a large variety of natural fibers in abundance. Some of natural fibers become organic waste if not used for something needed by humans. One of the potential uses of natural fiber composite materials is to be used in automotive components. But before natural fiber composites are used in automotive components, it is necessary to examine first what are the requirements for mechanical properties or other properties required by the automotive components. Especially the automotive components which have been made from Polymers, like  dash board, Car interior walls, front and rear bumper and Car body, etc. Each of these automotive components has different function and condition, and that caused different mechanical properties needed. The purpose of this study is collecting the data from the literature, related to the properties needed for these automotive components. This study was conducted by studying the literature of research journals in the last 10 years. From the research journals, data on the requirements of mechanical properties for automotive components will be collected. Furthermore, the data of mechanical properties required for automotive components can be used as a reference to determine the reliability of automotive components made from composite


2021 ◽  
Vol 881 ◽  
pp. 107-116
Author(s):  
Anteneh Geremew ◽  
Pieter De Winne ◽  
Tamene Adugna ◽  
Hans de Backer

Currently, researchers are more focusing on eco-friendly materials, sustainability, and low consumption of energy during the stage of handling, low initial cost, have appropriate mechanical properties and biodegradable and less susceptible to health hazards are the main challenge facing in the present day across the world especially to developing new materials that would improve the industrial supplies for making lightweight materials. Therefore; natural cellulosic fiber one, of effective strategies to substitute artificial fibers for its own benefits when compared and mainly concentrating to reinforce polymer matrices by natural cellulosic fiber due to their decomposable characteristic in nature. This an overview mainly discussed on commonly available natural fiber property such as physical property, chemical composition analysis, surface morphology analysis such as thermal stability analysis (TGA), Fourier Transform Infrared (FTIR) analysis and Scanning Electron Microscopy (SEM) to be adopted in order to characterized natural fiber and impact of treating natural fibers by appropriate chemical on certain properties was discussed by supporting literature. In addition to this the significance of characterization of natural fiber briefly discussed and this an overview will helps other researcher’s source for natural fiber composite studies in future studies.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sri Hastuti ◽  
Catur Pramono ◽  
Yafi Akhmad

The Eichornia crassipes fiber have potentially as a composite reinforcing material. The advantage of composites with natural fibers like to light weight, corrosion resistance, water resistance, attractive performance, and without machining process. The purpose of using natural fiber as an alternative material to replace glass fiber composite material with Eichornia crassipes fibers are friendly and cheap. The research material used Eichornia crassipes fiber, NaOH, Etanol, and H2O. Processing of Eichornia crassipes fiber is washing with water, natural drying ± 10 days in eviromental, fiber taking with steel brush. Dry fibre were subjected to 10%, 20%, 30% NaOH and ethanol solution with variations of immersion time of 2, 4, 6 hours, neutralization with H20, and drying at room temperature. The Single fiber tensile test specimens were made with variations of treatment type in NaOH and Ethanol solution (10%, 20%, 30%), immersion time of 2, 4, and 6 hours. Single fiber test specimens refer to standard ASTM D 3379. Optimum tensile strength test results on NaOH treatment 20% variation of immersion time 4 hours: 28.402 N / mm2 and on ethanol treatment 20% variation of immersion time 2 hours: 48.197 N / mm2.


Sign in / Sign up

Export Citation Format

Share Document