scholarly journals The Effect of Glass Fiber Powder on the Properties of Waterborne Coatings with Thermochromic Ink on a Chinese Fir Surface

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1733 ◽  
Author(s):  
Yan ◽  
Qian ◽  
Chang ◽  
Lu ◽  
Miyakoshi

In this study, the effect of glass fiber powder on the properties of waterborne coatings with thermochromic ink was investigated, using Chinese fir board as the base material and temperature-sensitive thermochromic waterborne coatings with thermochromic ink as the paint base. The concentration of glass fiber powder was determined when the microstructure, optical properties, mechanical properties, liquid resistance, and heat preservation effect were the best. The results showed that the paint film with glass fiber powder concentration of 1.0% to 7.0% had better discoloration performance. With an increase of the glass fiber powder concentration, the gloss of the paint film decreased gradually, and when the concentration of glass fiber powder was 0% to 5.0%, the gloss of the paint film was better. The concentration of glass fiber powder had no effect on the adhesion, impact resistance, and liquid resistance. In the first 2.5 min, the temperature value of the waterborne coating with 3.0% glass fiber powder was higher than that without glass fiber powder, which has a certain heat preservation effect. When the glass fiber powder content was 3.0%, the microstructure of paint film was the best. The composition of paint film with different glass fiber powder concentrations was not different and the discoloration performance of paint film with heat preservation effect was not affected by time. The analysis showed that the waterborne coating with 3.0% glass fiber powder had the best comprehensive performance. This work provides a technical reference for the industrialization of heat preservation and thermochromic coating on wood.

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 815 ◽  
Author(s):  
Xiaoxing Yan ◽  
Yijuan Chang

The suitable coating process and discoloration effect of the waterborne paint added with color-changing powder on the surface of Chinese fir were investigated using an orthogonal method from three factors of the number of primers, topcoats, and the way of adding color-changing powder. It was found that the number of primers showed the greatest significance on the color difference of paint film, and the method of adding the color-changing powder had the most influence on the gloss of the paint film. Meanwhile, the impact resistance, paint film adhesion, liquid film resistance level, the gloss of coatings, and the composition of waterborne coatings were not affected by the three factors. The results indicated that two primers, two topcoats with color-changing powder, were the most suitable coating technologies for the reversible color waterborne coating to obtain a stable and sustainable discoloration effect. These results will provide a reference for the construction and application of a color-changing coating.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 635 ◽  
Author(s):  
Yan ◽  
Chang ◽  
Qian

Wood surface decoration and protection has become a topic of public concern. In this paper, a temperature-sensitive and reversible thermochromic waterborne wood coating was prepared by using Chinese fir board as the base material and a waterborne wood coating with the pigment slurry of thermochromic microcapsules as the paint base. The optical properties, mechanical properties and chemical resistance of the waterborne wood coating were tested, and its microstructure was analyzed. The results showed that when the concentration of thermochromic pigment slurry was 30.0%, the thermochromic property of the waterborne wood coating was best. The gloss of the waterborne wood coating with 15.0% pigment slurry of thermochromic microcapsules was high. The concentration of thermochromic pigment slurry had no effect on the adhesion, impact resistance, or chemical resistance of the waterborne wood coating. Based on the above results, the waterborne wood coating on Chinese fir had the best comprehensive performance when the concentration of thermochromic pigment slurry was 15.0%. This work will provide a technical reference for the industrialization of the thermochromic coating film on wood.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 742 ◽  
Author(s):  
Xiaoxing Yan ◽  
Lin Wang ◽  
Xingyu Qian

This study chose organic thermochromic pigment powder and waterborne wood primer as the paint base, and Chinese fir board as the substrate to prepare thermochromic waterborne coatings with different concentrations of thermochromic pigment powder. The best concentration of thermochromic pigment powder for waterborne primer film on Chinese fir surface was explored. The experimental results showed that the color-changing property of the primer film was the best when the concentration of pigment powder in primer film was 5.0%–10%. There was a negative correlation between the gloss of the primer and the concentration of pigment powder. The gloss of the primer film was the highest when the concentration of pigment powder was 5%. When the concentration of pigment powder is 0%–20% and 25.0%–30%, the adhesion of the coating is grade 0 and grade 1, respectively. The resistance to the impact of primer film increased with the increase of concentration of pigment powder, but the resistance to the impact of primer film with 0%–30% of thermochromic pigment powder concentration was similar. Scanning electron microscopy showed that the higher the concentration of thermochromic pigment powder, the more particles and agglomeration. When the concentration of pigment powder was 5%, the distribution of particles was uniform and no agglomeration, and the microstructure of primer film was the best. Infrared spectroscopy showed that there was no difference in the composition of the paint film from 0% to 30%. The results showed that the comprehensive property of waterborne primer film on Chinese fir was better when the pigment concentration was 5%. Waterborne thermochromic primer film provides a potential application for the development of intelligent furniture in different temperature ranges.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 588 ◽  
Author(s):  
Xiaoxing Yan ◽  
Lin Wang ◽  
Xingyu Qian

A thermochromic waterborne coating with thermal insulation efficacy was prepared by adding thermochromic microcapsules and glass fiber powder. The influence of the pigment volume concentration (PVC) of a glass fiber powder on the performance of the thermochromic coating for Chinese fir boards was investigated. It was found that a coating with a PVC of glass fiber powder of 0–22.0% had better discoloration properties. When the PVC of the glass fiber powder was more than 4.0%, with the increase of the PVC, the gloss of the coating decreased gradually, while, the adhesion, impact resistance, and liquid resistance were not affected. When the PVC of the glass fiber powder was 10.0%–30.0%, it showed thermal insulation efficacy and high hardness. The coating with a PVC of 16.0% glass fiber powder had better wear resistance. The discoloration property of the coating with thermal insulation efficacy was not affected by time. These results exhibit great potential for the application of a wood surface thermochromic and thermal insulation coating.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 223 ◽  
Author(s):  
Xiaoxing Yan ◽  
Lin Wang ◽  
Xingyu Qian

The effect of the coating process on the properties of reversible thermochromic waterborne coating on the surface of Chinese fir was examined. The results demonstrated that the most critical process parameter affecting the color difference and gloss of the coating was the way of adding thermochromic ink. The coating process had little influence on the adhesion, impact resistance adding, liquid resistance, and original properties of the coating. There was no obvious gloss variation in the coating under different coating processes. For the (3+3) layered coatings, when the thermochromic ink was added to the topcoats, the discoloration performance was the most obvious and the comprehensive performance of coating was better. Meanwhile, the gloss was 55.6%, the adhesion grade was grade 0, the impact resistance was 5.0 kg·cm, the liquid resistance grade of the coating to sodium chloride, ethanol and detergent was grade 1, and the liquid resistance grade to red ink was grade 3. The discoloration performance of the coating was stable under the conditions of aging and time change. This study provides new insight into preparing thermochromic intelligent waterborne wood coatings with potential practical applications on Chinese fir wood surfaces, and also lays a foundation for its application in furniture engineering.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 444 ◽  
Author(s):  
Xiaoxing Yan ◽  
Lin Wang ◽  
Xingyu Qian

The effect of adding wheat straw powder after lignin removal (WSPALR) and high-temperature calcined WSPALR on the hardness, adhesion, and resistance to impact, color difference, and mold resistance of waterborne coatings was studied. The results showed that the hardness was the highest of 6H when the concentration of WSPALR was 1.0%–2.0%. WSPALR and high-temperature calcined WSPALR had little effect on the adhesion and impact resistance of waterborne coatings, and the resistance to impact was about 10.0 kg cm. When both the concentration of WSPALR and high-temperature calcined WSPALR were 0.5%, the waterborne coating had the best adhesion of Level 1. The addition of high-temperature calcined WSPALR maintained the color difference of the original coatings. A high WSPALR concentration showed better mold resistance than a low concentration WSPALR, and the inhibition effect of high-temperature calcined WSPALR on Trichoderma was better than that of WSPALR. When the concentration of WSPALR calcined at a high temperature was 0.5%, it showed a better hardness of 4H, Level 1 adhesion, 10.0 kg cm resistance to impact, and 1.1 color difference of the waterborne coating. This work has important application value for mold resistance of wood coatings.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3167
Author(s):  
Xiaoxing Yan ◽  
Yu Tao ◽  
Xingyu Qian

Urea formaldehyde was used as wall material and waterborne coatings as a core material to prepare microcapsules. So as to explore the influence of mass ratio of core to shell, reaction temperature and standing time on the performance of microcapsules, the orthogonal test of three factors and two levels was put into effect. The orthogonal experimental results showed the mass ratio of core to shell was the most important factor. With the increase of the mass ratio of core to shell, the output and clad ratio of microcapsules increased first and then decreased. The microcapsule with the mass ratio of core to shell of 0.67:1 had better appearance, output, and encapsulation performance. The optical properties of waterborne wood coating with the microcapsules of waterborne coating as core materials did not decrease significantly, while the hardness, impact resistance, and toughness were improved. At the same time, the microcapsules have a certain self-repairing effect on coating micro-cracks. Compared with the properties of waterborne coatings with other microcapsules, the coating with waterborne coating as core material has better comprehensive performance. The results provide a new research idea for the performance enhancement and self-healing of wood waterborne coating.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2017 ◽  
Vol 57 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmad Rafiq ◽  
Nesar Merah ◽  
Rachid Boukhili ◽  
Muneer Al-Qadhi

Sign in / Sign up

Export Citation Format

Share Document