scholarly journals Development of Biocomposite Polymeric Systems Loaded with Antibacterial Nanoparticles for the Coating of Polypropylene Biomaterials

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1829
Author(s):  
Mar Fernández-Gutiérrez ◽  
Bárbara Pérez-Köhler ◽  
Selma Benito-Martínez ◽  
Francisca García-Moreno ◽  
Gemma Pascual ◽  
...  

The development of a biocomposite polymeric system for the antibacterial coating of polypropylene mesh materials for hernia repair is reported. Coatings were constituted by a film of chitosan containing randomly dispersed poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with chlorhexidine or rifampicin. The chlorhexidine-loaded system exhibited a burst release during the first day reaching the release of the loaded drug in three or four days, whereas rifampicin was gradually released for at least 11 days. Both antibacterial coated meshes were highly active against Staphylococcus aureus and Staphylococcus epidermidis (106 CFU/mL), displaying zones of inhibition that lasted for 7 days (chlorhexidine) or 14 days (rifampicin). Apparently, both systems inhibited bacterial growth in the surrounding environment, as well as avoided bacterial adhesion to the mesh surface. These polymeric coatings loaded with biodegradable nanoparticles containing antimicrobials effectively precluded bacterial colonization of the biomaterial. Both biocomposites showed adequate performance and thus could have potential application in the design of antimicrobial coatings for the prophylactic coating of polypropylene materials for hernia repair.

2002 ◽  
Vol 724 ◽  
Author(s):  
Sabine Paulussen ◽  
Dirk Vangeneugden ◽  
Olivier Goossens ◽  
Erik Dekempeneer

AbstractThis paper addresses the development of plasma polymer coatings that should prevent bacteria from adhering to medical devices, implants, textile fibers, packaging materials, etc. The two main parameters affecting bacterial colonization onto surfaces are the surface energy and the surface roughness. Both parameters can be adjusted by the deposition of a thin plasma polymer coating in an atmospheric pressure dielectric barrier glow discharge. According to SEM, FTIR, SPM, XPS and contact angle measurements, smooth, hydrophilic plasma polymer coatings were obtained under specific plasma conditions starting from 2-hydroxyethyl methacrylate (HEMA) and ethyl diazoacetate (EDA).


2010 ◽  
Vol 55 (2) ◽  
pp. 845-853 ◽  
Author(s):  
Rachna N. Dave ◽  
Hiren M. Joshi ◽  
Vayalam P. Venugopalan

ABSTRACTCatheters and other indwelling devices placed inside human body are prone to bacterial infection, causing serious risk to patients. Infections associated with implants are difficult to resolve, and hence the prevention of bacterial colonization of such surfaces is quite appropriate. In this context, the development of novel antimicrobial biomaterials is currently gaining momentum. We describe here the preparation and antibacterial properties of an enzyme-embedded polycaprolactone (PCL)-based coating, coimpregnated with the antibiotic gentamicin sulfate (GS). The enzyme uses PCL itself as substrate; as a result, the antibiotic gets released at a rate controlled by the degradation of the PCL base.In vitrodrug release studies demonstrated sustained release of GS from the PCL film throughout its lifetime. By modulating the enzyme concentration in the PCL film, we were able to vary the lifetime of the coating from 33 h to 16 days. In the end, the polymer is completely degraded, delivering the entire load of the antibiotic. The polymer exhibited antibacterial properties against three test isolates:Escherichia coli,Pseudomonas aeruginosa, andStaphylococcus aureus. Foley urinary catheters coated with the modified polymer exhibited sustainedin vitrorelease of GS over a 60-h period. The results suggest that the antibiotic-plus-enzyme-loaded polymer can be used as tunable self-degrading antimicrobial biomaterial coating on catheters.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 462 ◽  
Author(s):  
Raghavendra Ramalingam ◽  
Chetna Dhand ◽  
Chak Leung ◽  
Hariharan Ezhilarasu ◽  
Praseetha Prasannan ◽  
...  

Electrospun fibers have emerged as promising materials in the field of biomedicine, due to their superior physical and cell supportive properties. In particular, electrospun mats are being developed for advanced wound dressing applications. Such applications require the firers to possess excellent antimicrobial properties in order to inhibit potential microbial colonization from resident and non-resident bacteria. In this study, we have developed Poly-ε-Caprolactone /gelatin hybrid composite mats loaded with natural herbal extract (Gymnema sylvestre) to prevent bacterial colonization. As-spun scaffolds exhibited good wettability and desirable mechanical properties retaining their fibrous structure after immersing them in phosphate buffered saline (pH 7.2) for up to 30 days. The initial burst release of Gymnema sylvestre prevented the colonization of bacteria as confirmed by the radial disc diffusion assay. Furthermore, the electrospun mats promoted cellular attachment, spreading and proliferation of human primary dermal fibroblasts and cultured keratinocytes, which are crucial parenchymal cell-types involved in the skin recovery process. Overall these results demonstrated the utility of Gymnema sylvestre impregnated electrospun PCL/Gelatin nanofibrous mats as an effective antimicrobial wound dressing.


2020 ◽  
Vol 10 (3) ◽  
pp. 280-289
Author(s):  
Kanchan Kashyap ◽  
Mayank Handa ◽  
Rahul Shukla

Background: Glioblastoma multiforme (GBM) is a belligerent brain tumor constituting about 67% of primary brain tumours. The current therapy for glioblastoma multiforme is surgery, radiations and chemotherapy though the success rate is quite limited. Azacitidine is a hydrophilic anti-cancer agent which acts by demethylation and is used in the treatment of both acute and chronic myelomonocytic leukaemia along with GBM. Objective: Formulation of stable Azacitidine loaded poly-lactide-co-glycolide (PLGA) nanoparticles (NPs) with tailor-made release profiles. Methods: Preparation of Azacitidine loaded PLGA nanoparticles was done by double emulsion (w/o/w) solvent evaporation technique. PLGA was used in the formulation, as it is biocompatible and biodegradable. Polyvinyl alcohol worked as an emulsifier while Span 80 decreased the interfacial tension among two immiscible phases (aqueous and organic), resulting in increased stability of the formulation. Results: Polymer concentration was directly proportional to the entrapment and drug loading and inversely proportional to particle size. Azacitidine loaded PLGA NPs showed a biphasic release model. At the first stage, burst release was observed, followed by sustained release. About 43.93 ± 0.69% drug was released in 1 hour and the remaining drug was released in 48 hours. Conclusion: Dual release behavior first delivered an ample amount of dose which provided cytotoxic dose, followed by the maintenance dose for sustaining the cytotoxic drug levels. Future prospective requires In-vitro cell viability evaluation of tailor-made polymeric nanoparticles along with In-vivo evaluation for therapeutic intervention in a glioblastoma tumor model.


2003 ◽  
Vol 47 (11) ◽  
pp. 3580-3585 ◽  
Author(s):  
Issam Raad ◽  
Ioannis Chatzinikolaou ◽  
Gassan Chaiban ◽  
Hend Hanna ◽  
Ray Hachem ◽  
...  

ABSTRACT Minocycline-EDTA (M-EDTA) flush solution has been shown to prevent catheter-related infection and colonization in a rabbit model and in hemodialysis patients. We undertook this study in order to determine the activities of M-EDTA against organisms embedded in fresh biofilm (in vitro) and mature biofilm (ex vivo). For the experiment with the in vitro model, a modified Robbin’s device (MRD) was used whereby 25 catheter segments were flushed for 18 h with 106 CFU of biofilm-producing Staphylococcus epidermidis, Staphyloccocus aureus, and Candida albicans per ml. Subsequently, each of the catheter segments was incubated in one of the following solutions: (i) streptokinase, (ii) heparin, (iii) broth alone, (iv) vancomycin, (v) vancomycin-heparin, (vi) EDTA, (vii) minocycline (high-dose alternating with low-dose), or (viii) M-EDTA (low-dose minocycline alternating with high-dose minocycline were used to study the additive and synergistic activities of M-EDTA). All segments were cultured quantitatively by scrape sonication. For the experiment with the ex vivo model, 54 catheter tip segments removed from patients and colonized with bacterial organisms by roll plate were longitudinally cut into two equal segments and exposed to either saline, heparin, EDTA, or M-EDTA (with high-dose minocycline). Subsequently, all segments were examined by confocal laser electron microscopy. In the in vitro MRD model, M-EDTA (with a low concentration of minocycline) was significantly more effective than any other agent in reducing colonization of S. epidermidis, S. aureus, and C. albicans (P < 0.01). M-EDTA (with a high concentration of minocycline) eradicated all staphylococcal and C. albicans organisms embedded in the biofilm. In the ex vivo model, M-EDTA (with a high concentration of minocycline) reduced bacterial colonization more frequently than EDTA or heparin (P < 0.01). We concluded that M-EDTA is highly active in eradicating microorganisms embedded in fresh and mature biofilm adhering to catheter surfaces.


2019 ◽  
Vol 7 (6) ◽  
pp. 469-483 ◽  
Author(s):  
Hanh T.H. Vu ◽  
Sarah Streck ◽  
Sarah M. Hook ◽  
Arlene McDowell

Objective: To compare the characteristics of rutin-loaded PLGA (poly(lactic-coglycolic acid)) nanoparticles prepared using a single emulsion evaporation method (bulk method) and a nanoprecipitation method using microfluidics. Method: Rutin-loaded PLGA nanoparticles were produced using different methods and characterized for size, zeta potential, entrapment efficiency (EE) and drug loading (DL). A design of experiments approach was used to identify the effect of method parameters to optimize the formulation. DSC was used to investigate the solid-state characteristics of rutin and PLGA and identify any interactions in the rutin-loaded PLGA nanoparticles. The release of rutin from PLGA nanoparticles was examined in biorelevant media and phosphate buffer (PBS). Results : The optimal formulation of rutin-loaded PLGA nanoparticles produced using a microfluidics method resulted in a higher entrapment efficiency of 34 ± 2% and a smaller size of 123 ± 4 nm compared to a bulk method (EE 27 ± 1%, size 179 ± 13 nm). The solidstate of rutin and PLGA changed from crystalline to amorphous with the preparation of rutin- loaded PLGA nanoparticles. More importantly, using microfluidics, rutin released faster from rutin-loaded PLGA nanoparticles in biorelevant media and PBS with higher burst release compared to the rutin release from the nanoparticles prepared by using the bulk method. Conclusion: Rutin can be encapsulated in nanoparticles formulated with different methods with mean sizes of less than 200 nm. Microfluidics produced more uniform rutin-loaded PLGA nanoparticles with a higher EE, DL and faster release compared to a bulk production method.


2015 ◽  
Vol 3 (40) ◽  
pp. 7963-7973 ◽  
Author(s):  
D. Dutta ◽  
C. Fauer ◽  
H. L. Mulleneux ◽  
S. E. Stabenfeldt

Control over burst release from SDF-1α-loaded PLGA nanoparticles when embedded in varying densities of fibrin matrices using specific protein/protein interactions.


2017 ◽  
Vol 5 (11) ◽  
pp. 2337-2346 ◽  
Author(s):  
Dan Li ◽  
Pengfei Lv ◽  
Linfeng Fan ◽  
Yaoyi Huang ◽  
Fei Yang ◽  
...  

Polymeric multilayers covalently fixed to Ti surfaces could offer a sustained drug release with no initial burst release and extend the drug release time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Santosh Pandit ◽  
Shadi Rahimi ◽  
Abderahmane Derouiche ◽  
Athmane Boulaoued ◽  
Ivan Mijakovic

AbstractProtecting surfaces from bacterial colonization and biofilm development is an important challenge for the medical sector, particularly when it comes to biomedical devices and implants that spend longer periods in contact with the human body. A particularly difficult challenge is ensuring long-term protection, which is usually attempted by ensuring sustained release of antibacterial compounds loaded onto various coatings. Graphene have a considerable potential to reversibly interact water insoluble molecules, which makes them promising cargo systems for sustained release of such compounds. In this study, we developed graphene coatings that act as carriers capable of sustained release of usnic acid (UA), and hence enable long-term protection of surfaces against colonization by bacterial pathogens Staphylococcus aureus and Staphylococcus epidermidis. Our coatings exhibited several features that made them particularly effective for antibiofilm protection: (i) UA was successfully integrated with the graphene material, (ii) a steady release of UA was documented, (iii) steady UA release ensured strong inhibition of bacterial biofilm formation. Interestingly, even after the initial burst release of UA, the second phase of steady release was sufficient to block bacterial colonization. Based on these results, we propose that graphene coatings loaded with UA can serve as effective antibiofilm protection of biomedical surfaces.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2946
Author(s):  
Jason Thomas Duskey ◽  
Ilaria Ottonelli ◽  
Arianna Rinaldi ◽  
Irene Parmeggiani ◽  
Barbara Zambelli ◽  
...  

Enzymes, as natural and potentially long-term treatment options, have become one of the most sought-after pharmaceutical molecules to be delivered with nanoparticles (NPs); however, their instability during formulation often leads to underwhelming results. Various molecules, including the Tween® polysorbate series, have demonstrated enzyme activity protection but are often used uncontrolled without optimization. Here, poly(lactic-co-glycolic) acid (PLGA) NPs loaded with β-glucosidase (β-Glu) solutions containing Tween® 20, 60, or 80 were compared. Mixing the enzyme with Tween® pre-formulation had no effect on particle size or physical characteristics, but increased the amount of enzyme loaded. More importantly, NPs made with Tween® 20:enzyme solutions maintained significantly higher enzyme activity. Therefore, Tween® 20:enzyme solutions ranging from 60:1 to 2419:1 mol:mol were further analyzed. Isothermal titration calorimetry analysis demonstrated low affinity and unquantifiable binding between Tween® 20 and β-Glu. Incorporating these solutions in NPs showed no effect on size, zeta potential, or morphology. The amount of enzyme and Tween® 20 in the NPs was constant for all samples, but a trend towards higher activity with higher molar rapports of Tween® 20:β-Glu was observed. Finally, a burst release from NPs in the first hour with Tween®:β-Glu solutions was the same as free enzyme, but the enzyme remained active longer in solution. These results highlight the importance of stabilizers during NP formulation and how optimizing their use to stabilize an enzyme can help researchers design more efficient and effective enzyme loaded NPs.


Sign in / Sign up

Export Citation Format

Share Document