scholarly journals A Constitutive Model of High-Early-Strength Cement with Perlite Powder as a Thermal-Insulating Material Confined by Caron Fiber Reinforced Plastics at Elevated Temperatures

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2369
Author(s):  
Yeou-Fong Li ◽  
Wai-Keong Sio ◽  
Tzu-Hsien Yang ◽  
Ying-Kuan Tsai

A parabolic stress–strain constitutive model for inorganic thermal-insulating material confined by carbon fiber-reinforced polymer (CFRP) exposed to a surrounding elevated temperature was proposed in this paper. The thermal-insulating material used in this study was composed of high-early-strength cement (HESC) and perlite powder. The compression strengths of four kinds of perlite powder composition ratios of thermal-insulating materials cylindrical specimens which were confined by one, two, and three-layer CFRP composite materials were acquired. The experimental results showed that the compression strength was enhanced as the amount of perlite substitute decreased or as the number of CFRP wrapping layers increased. The Mohr–Columb failure criteria were adopted to predict the maximum compressive strength of CFRP-confined inorganic thermal-insulating material. The strain at the maximum compressive strength was found from the experimental results, and the corresponding axial strain at the maximum compressive strength in the constitutive model was determined from the regression analysis. Furthermore, the compressive strengths of the four different perlite composites of thermal-insulating materials were obtained when heating the specimens from ambient temperature to 300 °C. The compressive strength decreased with an increase in temperature, and a thermal softening parameter model was proposed; the thermal softening parameter was determined from the experimental maximum compressive strength at an elevated temperature. Combining the above two models, the constitutive model of HESC with perlite powder additive as a thermal-insulating material confined by CFRP under elevated temperature was proposed.

2012 ◽  
Vol 512-515 ◽  
pp. 915-921
Author(s):  
Yan Wei Liu ◽  
Guo Fu Li ◽  
Xiao Yong Liu

The research aims to develop inorganic thermal-insulating materials of high performance, decrease high geothermal emissions from hot rock to the roadway, reduce the roadway airflow temperature, and achieve mine cooling and energy saving eventually. Firstly, the best proportion of inorganic thermal-insulating materials of high performance was designed, and a test model for thermal conductivity and mechanical analysis has been built. And through the test of thermal-insulating of the material and mechanical properties, the relation equations between vitreous micro-bead content (the main agent of thermal-insulating material) and thermal conductivity, uniaxial compressive strength, confined compressive strength have been obtained respectively. Secondly, the feature, the fitting and coupling features between the experimental models and engineering conditions in practice were analyzed comparatively, which could provide theoretical basis for the design and application of thermal-insulating materials of high performance. The industrial test shows that with thermal-insulating materials of high performance in application, the roadway airflow temperature was reduced significantly and could meet the requirements of mine pressure. Therefore, the research could offer an effective way for the mine thermal-insulating and cooling under high geothermal conditions.


2012 ◽  
Vol 535-537 ◽  
pp. 1913-1917
Author(s):  
Lu Jun

In response to the requirement of saving 65% energy in hot summer and cold winter zone, a comprehensive comparative analysis has been conducted in various aspects towards the common organic and inorganic thermal insulating materials in the market. And a conclusion has been drawn that, on the basis of reaching the standards, inorganic thermal insulating materials represented by aluminum sulfate boast obvious advantages compared to organic ones in terms of fire proofing, durability, economical efficiency, and environmental protection etc. Thus, the inorganic thermal insulating material will become the first choice in future market.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 26 ◽  
Author(s):  
Yeou-Fong Li ◽  
Wai-Keong Sio ◽  
Ying-Kuan Tsai

In this paper, a compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature was proposed. The thermal insulation material was made by Portland cement with different portions of perlite. The compressive strengths of four different perlite ratios in weight, such as 0%, 10%, 20%, and 30% of thermal insulation materials, confined by one-layer, two-layer, and three-layer carbon fiber-reinforced polymer (CFRP) composite materials, were obtained. The test results indicated that the specimen’s compressive strength decreased with an increase in the amount of perlite replacement and increased with an increase in the number of CFRP wrapping layers. Based on the test results, a theoretical compressive peak strength model with some parameters was proposed. In the meantime, the compressive strengths of the above four different perlite ratios of thermal insulation materials under elevated temperature, such as ambient temperature, 100 °C, 150 °C, 200 °C, 250 °C, and 300 °C, were obtained. For compression tests of specimens with a fixed amount of perlite, the test results indicated that the specimen’s compressive strength decreased with an increase in temperature, highlighting a thermal softening phenomenon. Based on the test results, a compressive peak strength model with a thermal softening parameter was proposed to predict the peak strength under elevated temperature. Finally, a compressive peak strength model for thermal insulation material with CFRP confinement under different elevated temperature was derived, and it achieved acceptable results in comparison to the experimental results.


2014 ◽  
Vol 941-944 ◽  
pp. 1562-1565 ◽  
Author(s):  
Jing Da ◽  
Yu Hui Du ◽  
Mao Dong Li ◽  
Cun Bao Zhang

Diatomite was used as the main material and sodium silicate as the alkali activating solution in this paper. Diatomite light-weigh material was made by chemical foaming method. Compressive strength, density and heat conductivity were used to measure its performances. Results showed that density, compressive strength showed a growth trend while coefficient of thermal conductivity showed the opposite trend with increasing rapid hardening cement and senior gypsum.


2013 ◽  
Vol 690-693 ◽  
pp. 1045-1048 ◽  
Author(s):  
Mohammad Ismail ◽  
Taliat Ola Yusuf ◽  
Ainul H Noruzman ◽  
I. O. Hassan

In this paper, the early strength behavior of Metakaolin and Palm Oil Fuel Ash (POFA) based geopolymer mortar was investigated for the purpose of exploring the utilization of POFA which is a waste material generated from production of palm oil. Geopolymer mortar was prepared by activating metakaolin combined with POFA at 0%, 30%, 40%, 50%, 60%, 70% and 80% replacement levels in NaOH and Na2SiO3 medium. The mortar specimens were tested for compressive strength at 3 and 7days. The maximum compressive strength at 3 and 7days are 65.264MPa and 68.863MPa respectively corresponding to a POFA replacement of 40%. A replacement of 80% POFA to 20% Metakaolin gave compressive strength as high as 26.174MPa and 30.791MPa for 3 and 7 days. It was also discovered that water demand of the system reduced with increase in POFA replacement. It is concluded that POFA addition to metakaolin can improve behavior of Metakaolin and POFA geopolymer system.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Qian Zhang ◽  
Haifeng Liu ◽  
Qiang Liu ◽  
Jialing Che ◽  
Weiwu Yang ◽  
...  

The shortage of sand resources and high-rise building fires are becoming increasingly prominent. Desert sand (DS) with smaller particles can effectively fill the concrete voids and further improve its working performance; it is used as a fine aggregate to produce concrete. This article studied the performance of desert sand concrete (DSC) against fire resistance by using mathematical modeling for simulation. The stress-strain curves of desert sand mortar (DSM) after elevated temperatures were tested, and the constitutive model was established. By comparing the experiment and simulation results, it was verified that the model is suitable to be adopted in this study. Data from experiment and past literature can serve as parameters for the subsequent simulation. The destruction process of DSC under uniaxial compression after elevated temperature was simulated by using ANSYS. The simulation results indicated that, after elevated temperature, compressive strength reduced with increase of interface thickness. The compressive strength of DSC had a substantially linear increase as the interface compressive strength increased. For two-grade coarse aggregate, the optimum volume content was 45%, and particle size of it showed a significant effect on the compressive strength of DSC. The DSM constitutive model and simulation results can provide a sound theoretical basis and technical support for DSC engineering applications.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 226-233
Author(s):  
A. A. Seneta ◽  
◽  
N. K. Manakova ◽  

The article discusses the possibility of creating new inorganic heat-insulating materials based on liquid glass binder and mineral fillers. Within the framework of the article, the influence of various additives such as sawdust, chalk, coal and graphite on the physical and technical properties of an inorganic heat-insulating material is considered. The authors of the article proposed the compositions and conditions for obtaining materials that meet the regulatory requirements for materials and products for building thermal insulation


2013 ◽  
Vol 545 ◽  
pp. 82-88 ◽  
Author(s):  
Nattida Klinklow ◽  
Sethayuth Padungkul ◽  
Supoj Kanthong ◽  
Somjate Patcharaphun ◽  
Ratchatee Techapiesancharoenkij

This research studied the feasibility of using natural fibers extracted from natural wastes as a thermal-insulating material lined in a Kraft paper box packaging. The natural fibers were extracted from natural waste of rice straws using NaOH solutions. The extracted fibers were then formed as a porous thermal-insulating pad by a spray lay-up method using natural rubbers as binders. The thermal conductivities, specific heat capacities and temperature-rise time of the natural fiber insulation and other thermal-insulating materials including polystyrene foam, a polyethylene foam, and a glass fiber insulation were studied and compared. The glass fiber insulation showed the highest thermal conductivity, while the thermal conductivities of the other studied insulating materials were found to be similar. Moreover, the polymeric and natural-fiber insulations show better temperature-rise resistance than the glass fiber insulation. The temperature rises for different insulating materials were estimated using the analytical analysis of heat transfer. The calculated temperature-rise times were compared with the empirical results; both results are in the same order of magnitude. Consequently, a Kraft paper box lined with natural-fiber pads was constructed and compared with a Kraft paper box (without insulation lining) and a polystyrene box of equal sizes. The boxes were packed with an equal amount of ice and left under room temperature for 24 hours. The results show that, after 24 hours, the temperatures inside the natural-fiber lined box and the polystyrene box were contained below 15 °C, while the temperature inside the Kraft paper box increase to room temperature only after 16 hours. The observation shows that a natural fiber pad can potentially be used as an alternative insulating material in packaging industries, which can enhance environmental-friendly packaging products.


2015 ◽  
Vol 1124 ◽  
pp. 183-188 ◽  
Author(s):  
Martin Sedlmajer ◽  
Jiri Zach ◽  
Jitka Hroudova

The paper describes the possibility of using textile fibers (natural and synthetic) for the production of thermal insulation materials in the form of mats using in construction. The paper deals mainly with soft thermal insulation mats and the factors that affect the thermal insulation properties of the insulating material in its manufacture and subsequent incorporation into the structure.


Sign in / Sign up

Export Citation Format

Share Document