scholarly journals Effect of Lignin Content on Properties of Flexible Transparent Poplar Veneer Fabricated by Impregnation with Epoxy Resin

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2602 ◽  
Author(s):  
Mengting Lu ◽  
Wen He ◽  
Ze Li ◽  
Han Qiang ◽  
Jizhou Cao ◽  
...  

In this work, poplar veneer (PV) rotary-cut from fast-growing polar was delignified to prepare flexible transparent poplar veneer (TPV). Lignin was gradually removed from the PV and then epoxy resin filled into the delignified PV. The study mainly concerns the effect of lignin content on microstructure, light transmittance, haze, tensile strength, and thermal stability of the PVs impregnated with epoxy resin. The results indicate that the lignin could be removed completely from the PV when the delignification time was around 8 h, which was proved by FTIR spectra and chemical component detection. Moreover, according to SEM observation and XRD testing, the porosity and crystallinity of the PVs were gradually increased with the removal of lignin. Also, the optical properties measurement indicated that the light transmittance and haze of the TPVs gradually increased, and the thermal stability also became more stable as shown by thermogravimetric analysis (TG). However, the tensile strength of the TPVs declined due to the removal of lignin. Among them, TPV8 exhibited excellent optical properties, thermal stability, and tensile strength. Consequently, it has great potential to be used as a substrate in photovoltaics, solar cells, smart windows, etc.

2012 ◽  
Vol 482-484 ◽  
pp. 1863-1868 ◽  
Author(s):  
Ya Wen Huang ◽  
Jia Jun Ma ◽  
Jun Xiao Yang

Copolymer of p-phenylenediamine and bispirocyclic pentaerythritol diphosphate was synthesized and characterized by FTIR and 1H NMR. This polymer was used to prepare epoxy resin/SPDA composites. Thermal stability of SPDA and epoxy/SPDA composites were investigated by thermogravimetric analysis (TGA), and their flammability were investigated by the LOI test. TGA results showed that the addition of SPDA improved the char residue of epoxy resin. SEM investigation showed that the residual chars have a honeycomb-like structure, indicating an intumescent flame retarding effect of SPDA in composites. In addition, all of above results confirmed that accelerate carbonization play a key role in improving flame retardancy of epoxy resin.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Alaaddin Cerit ◽  
Mustafa Esen Marti ◽  
Ulku Soydal ◽  
Suheyla Kocaman ◽  
Gulnare Ahmetli

Epoxy resin (ER) was modified with four different epoxide compounds, 4,5-epoxy-4-methyl-pentane-2-on (EMP), 3-phenyl-1,2-epoxypropane (PhEP), 1-chloro-2,3-epoxy-5-(chloromethyl)-5-hexene (CEH), and a fatty acid glycidyl ester (FAGE), to improve its chemical and physical properties. The effects of the addition and amount of these modifiers on mechanical, thermal, and coating properties were investigated. Atomic force microscopy was used to observe the changes obtained with the modification. The influence of the modifying agents on the curing process was monitored through FTIR spectroscopy. The curing degrees of ER and modified ERs (M-ERs) were found to be over 91%. The results showed that tensile strength of ER improved till 30% (wt.) with addition of the modifier content. Modification with EMP and PhEP remarkably enhanced the thermal stability of ER to be highly resistant to the corrosive media.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1009 ◽  
Author(s):  
Jianxiao Lu ◽  
Chuanyue Sun ◽  
Kexin Yang ◽  
Kaili Wang ◽  
Yingyi Jiang ◽  
...  

Polylactic acid (PLA) is one of the most promising bio-based materials, but its inherent hydrophobicity limits its application. Although nanocellulose (NCC) is a desirable reinforcement for PLA, the poor interface compatibility between the two has been a challenge. In this work, hydroxyapatite (HAP) modified NCC was prepared, and the obtained NCC/HAP reinforcement was used to prepare PLA/NCC-HAP composites. Different ratios of NCC to HAP were studied to explore their effects on the mechanical and thermodynamic properties of the composites. When the ratio of NCC to HAP was 30/70, the tensile strength and tensile modulus of the composite film reached 45.6 MPa and 2.34 GPa, respectively. Thermogravimetric analysis results indicate that thermal stability of the composites was significantly improved compared with pure PLA, reaching 346.6 °C. The above revelations show that NCC/HAP significantly improved the interface compatibility with PLA matrix.


2020 ◽  
Vol 995 ◽  
pp. 43-48 ◽  
Author(s):  
Kamila Salasinska ◽  
Agnieszka Gajek ◽  
Maciej Celiński ◽  
Kamila Mizera ◽  
Monika Borucka ◽  
...  

A novel flame retardant system, embraced shell (S) and histidine diphosphate (H) as intumescent flame retardant developed in the Department of Chemical, Biological and Aerosol Hazards laboratory, was added to the epoxy resin and examined. The influence of flame retardant system on the thermal stability was assessed based on thermogravimetric analysis (TGA). Moreover, the flame retardant components were characterized by grain size distribution. It was found that the incorporation of the developed flame retardant system caused the formation of thermal stable char, which may inhibit the burning process.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


2021 ◽  
Vol 31 (22) ◽  
pp. 2170155
Author(s):  
Herlina Arianita Dewi ◽  
Jia Li ◽  
Hao Wang ◽  
Bhumika Chaudhary ◽  
Nripan Mathews ◽  
...  

2021 ◽  
Vol 118 (2) ◽  
pp. 023302
Author(s):  
Jaehoon Kim ◽  
Yeonkyung Lee ◽  
Jun Young Kim ◽  
Hyung-Jun Song ◽  
Jiyun Song ◽  
...  

2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


Sign in / Sign up

Export Citation Format

Share Document