scholarly journals 3D Nanoarchitecture of Polyaniline-MoS2 Hybrid Material for Hg(II) Adsorption Properties

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2731
Author(s):  
Hilal Ahmad ◽  
Ibtisam I. BinSharfan ◽  
Rais Ahmad Khan ◽  
Ali Alsalme

We report the facile hydrothermal synthesis of polyaniline (PANI)-modified molybdenum disulfide (MoS2) nanosheets to fabricate a novel organic–inorganic hybrid material. The prepared 3D nanomaterial was characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction studies. The results indicate the successful synthesis of PANI–MoS2 hybrid material. The PANI–MoS2 was used to study the extraction and preconcentration of trace mercury ions. The experimental conditions were optimized systematically, and the data shows a good Hg(II) adsorption capacity of 240.0 mg g−1 of material. The adsorption of Hg(II) on PANI–MoS2 hybrid material may be attributed to the selective complexation between the–S ion of PANI–MoS2 with Hg(II). The proposed method shows a high preconcentration limit of 0.31 µg L−1 with a preconcentration factor of 640. The lowest trace Hg(II) concentration, which was quantitatively analyzed by the proposed method, was 0.03 µg L−1. The standard reference material was analyzed to determine the concentration of Hg(II) to validate the proposed methodology. Good agreement between the certified and observed values indicates the applicability of the developed method for Hg(II) analysis in real samples. The study suggests that the PANI–MoS2 hybrid material can be used for trace Hg(II) analyses for environmental water monitoring.

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 926
Author(s):  
Shamim Ahmed Hira ◽  
Mohammad Yusuf ◽  
Dicky Annas ◽  
Hu Shi Hui ◽  
Kang Hyun Park

Activated carbon (AC) was fabricated from carrot waste using ZnCl2 as the activating agent and calcined at 700 °C for 2 h in a tube furnace. The as-synthesized AC was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analysis; the results revealed that it exhibited a high specific surface area and high porosity. Moreover, this material displayed superior catalytic activity for the degradation of toxic Rhodamine B (RhB) dye. Rate constant for the degradation of RhB was ascertained at different experimental conditions. Lastly, we used the Arrhenius equation and determined that the activation energy for the decomposition of RhB using AC was approximately 35.9 kJ mol−1, which was very low. Hopefully it will create a great platform for the degradation of other toxic dye in near future.


2009 ◽  
Vol 24 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Yange Zhang ◽  
Zhi Zheng ◽  
Ka Wai Wong ◽  
Fengling Yang ◽  
Zude Zhang

The α-, β-, and δ-MnO2 with various morphologies have been synthesized by a novel redox system of KMnO4 and CuCl with HCl added under a hydrothermal condition. The resultant MnO2 products have been characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Upon control of reaction temperature and duration, it was observed that MnO2 polymorphs of different morphology (e.g., flowery δ-MnO2, β-MnO2 nanowires and octahedrons, α-MnO2 nanowires) can be prepared in an adjustable manner. The phenomenon is mainly attributed to the effect of cuprous ions controllably released from CuCl by the action of HCl at different experimental conditions. The corresponding formation mechanism for the MnO2 crystals will also be proposed and discussed.


2012 ◽  
Vol 184-185 ◽  
pp. 1171-1174
Author(s):  
Ke Gao Liu ◽  
Zhong Quan Ma ◽  
Jian Hua Wang

The Fe-Se powders have been prepared by hydrothermal method at temperatures of 160, 180 and 200 °C from FeCl3•6H2O and SeO2. The phases and morphology of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively. Experimental results show that, the major phases of these product powders are all FeSe2, the impurity phase Se can be identified in spite of poor crystallinity of all samples. The poor crystallinity becomes seriously at lower synthesizing temperature under the experimental conditions. These product powders consist of grains, rods or flakes with sizes of 20~300nm, among which the product obtained at 180 °C has the smallest size of 20~40 nm.


2012 ◽  
Vol 503-504 ◽  
pp. 637-640
Author(s):  
Yuan Xing Cai ◽  
Ke Gao Liu

The technologies of synthesizing Ni-S powders from 0.001 mol NiCl2•6H2O and 0.001 mol sulfur (S) powder were investigated at 95,105,120,140 and 160 °C. The phases and morphology of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively. Experimental results show that, the Ni-S powders prepared at 120~160 °C from NiCl2•6H2O and S powder have the same major phase NiS. These products have flakes or unregular shape grains with sizes of 100~200nm. However, the product powder prepared at 105 °C has the major phase Ni3S2 without obvious impurity phases and only grains with size less than 200nm. No Nickel sulfides can be synthesized at 95 °C under the experimental conditions. It can be found that the NiS phase appears in the products powders obtained at higher temperatures while Ni3S2 obtained at lower temperature.


2011 ◽  
Vol 25 (19) ◽  
pp. 1643-1650
Author(s):  
JUN-HONG DUAN ◽  
CHAO YAN ◽  
XING-DAO HE ◽  
YI-QING GAO ◽  
PEI-QIN SHI ◽  
...  

Single-crystalline SnO 2 zigzag nanobelts and straight nanobelts with triangular tip were synthesized by a simple Tin–water reaction method. The product was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman scattering and micro-photoluminescence spectroscopy to obtain the structural and optical information. Why zigzag nanobelts and straight nanobelts can be formed respectively under the same experimental conditions? On the basis of TEM characterization and thermodynamic analysis, the formation mechanism of zigzag nanobelts and straight nanobelts were proposed respectively.


2020 ◽  
Vol 82 (7) ◽  
pp. 1339-1349
Author(s):  
Fengfeng Ma ◽  
Bakunzibake Philippe ◽  
Baowei Zhao ◽  
Jingru Diao ◽  
Jian Li

Abstract Flax straw biochar (FSBC)-supported nanoscale zero-valent iron (nZVI) composite (nZVI-FSBC) combining the advantages of nZVI and biochar was synthesized and tested for Cr(VI) removal efficiency from aqueous solution. Surface morphology and structure of FSBC and nZVI-FSBC were characterized by scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller techniques, which help to clarify the mechanism of Cr(VI) removal from aqueous solution. The adsorption of Cr(VI) onto FSBC and nZVI-FSBC was best described by the pseudo-second-order and the Sips model. Compared with FSBC, nZVI-FSBC remarkably improved the performance in removing Cr(VI) under identical experimental conditions. Due to the collaborative effect of adsorption and reduction of nZVI-FSBC, the adsorption capacity of nZVI-FSBC for Cr(VI) is up to 186.99 mg/g. The results obtained by XPS, XRD, and FTIR confirmed that adsorption and reduction dominated the processes of Cr(VI) removal by nZVI-FSBC. As a supporter, FSBC not only improved the dispersion of nZVI, but also undertook the adsorption task of Cr(VI) removal. The surface oxygen-containing functional groups of nZVI-FSBC mainly participated in the adsorption part, and the nZVI promoted the Cr(VI) removal through the redox reactions. These observations indicated that the nZVI-FSBC can be considered as potential adsorbents to remove Cr(VI) for environment remediation.


1993 ◽  
Vol 8 (4) ◽  
pp. 720-726 ◽  
Author(s):  
Bruno Morosin ◽  
Grant M. Norton ◽  
Barry C. Carter ◽  
E.L. Venturini ◽  
D.S. Ginley

The microstructure of mixed phase, c-axis oriented Tl–Ca–Ba–Cu–O thin films, exhibiting excellent superconducting properties, has been examined by transmission electron microscopy and x-ray diffraction. Although the stoichiometry of the as-deposited films corresponds to the Tl2Ca2Ba2Cu3O10 phase (Tl-2223, c = 3.6 nm), x-ray diffraction showed these films contain up to 50% of the Tl2CaBa2Cu2O8 phase (Tl-2122, c ≍ 2.9 nm). The x-ray diffraction peaks of the 3.6 nm phase are noticeably broader than those of the 2.9 nm phase, suggesting a smaller coherent size along the c-axis for the 3.6 nm phase Lattice-fringe images of the 2.9 nm phase typically show only an occasional or no defect layer; however, such layer defects are more abundant in the 3.6 nm phase and, though random, occur with sufficiently wide separation and regularity to be consistent with an average coherency of ∼40 nm. The coherent sizes along the c-axis, as determined by x-ray line profile analysis, were 140 nm and 40 nm, respectively, for the 2.9 nm and 3.6 nm phases, in good agreement with those determined by electron microscopy. The estimated width of the layer defects observed in the lattice-fringe images is suggestive, for the most part, of the four Cu-layered phases (Tl-1324 or Tl-2324) and to a lesser degree the two Cu-layered phases (Tl-1122 or Tl-2122).


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


Sign in / Sign up

Export Citation Format

Share Document