scholarly journals Valorisation of Posidonia oceanica Sea Balls (Egagropili) as a Potential Source of Reinforcement Agents in Protein-Based Biocomposites

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2788
Author(s):  
Seyedeh Fatemeh Mirpoor ◽  
Concetta Valeria L. Giosafatto ◽  
Prospero Di Pierro ◽  
Rocco Di Girolamo ◽  
Carlos Regalado-González ◽  
...  

Nanocrystalline cellulose (NC) and a lignin-containing fraction (LF) were obtained from egagropili, the so called sea balls produced from rhizome and stem fragments of Posidonia oceanica that accumulate in large amounts along the coastal beaches in the form of tightly packed and dry materials of various dimensions. Both egagropili fractions have been shown to be able to improve the physicochemical properties of biodegradable films prepared from protein concentrates derived from hemp oilseed cakes. These materials, manufactured with a biodegradable industrial by-product and grafted with equally biodegradable waste-derived additives, exhibited an acceptable resistance with a still high flexibility, as well as they showed an effective barrier activity against water vapor and gases (O2 and CO2). Furthermore, both NC and LF decreased film moisture content, swelling ability and solubility, thus indicating that both additives were able to improve water resistance of the hydrocolloid films. The exploitation of egagropili, actually considered only an undesirable waste to be disposed, as a renewable source of reinforcing agents to blend with different kinds of polymers is suggested.

2013 ◽  
Vol 662 ◽  
pp. 433-436
Author(s):  
Jiang Zhu ◽  
Guo Zhong Li

Vitrified micro bubbles thermal insulation material was made of vitrified micro bubbles, cement, fly ash, gypsum and sodium silicate, by molding process. VAE emulsion and stearic acid-polyvinyl alcohol emulsion were added to improve water resistance of the material. Mixed with 10% VAE emulsion and 5% stearic acid-polyvinyl alcohol emulsion, properties of the material are followed as: flexural strength 0.64MPa, compressive strength 1.35MPa, softening coefficient 0.71 and 2h volumetric water absorption 6.9%.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3010
Author(s):  
Meritxell Martí ◽  
Jaime Gisbert-Paya ◽  
Mª Ángeles Bonet-Aracil ◽  
Petar Jovančić ◽  
Manuel J. Lis ◽  
...  

The hydrophilicity of fibers is directly related to the comfort of a fabric and represents one of the most important aspects of a textile. Therefore, polyester (PES) modification has focused on an increase in moisture content and a subsequent improvement of the user’s experience. Based on the glycerol hygroscopic properties, the main objective has been the enhancement of the hydrophilicity of polyester by glycerol treatments. Furthermore, microwave irradiation and alkaline treatment have been applied, in order to increase glycerol adhesion. Treated PES samples were characterized by performing moisture content, negative ion, water diffusion and water vapor resistance analyses. The effect of different treatment conditions such as bath ratio (1/10 or 1/15), temperature (40, 60 or 100 °C), time (2 or 5 min) and microwave radiation intensity (300 or 500 W) was evaluated. The moisture content of treated PES results indicated that by decreasing the bath ratio and increasing the time and temperature the moisture gain can reach almost 14%, which can be easily related to increases in the weight of the fiber. The treatment with alkali was done and led to the highest moisture increase. Treatment with 500 W microwave irradiation led to higher glycerol retention after rinsing. Different experimental conditions were applied to the glycerol-treated PES fabrics, and a clear improvement in moisture content was obtained increasing the comfort. The results were compared with the ones obtained for cotton and wool, where the moisture is higher than non treated PES.


2018 ◽  
Vol 69 (04) ◽  
pp. 298-303
Author(s):  
BOUGHATTAS AMAL ◽  
BENLTOUFA SOFIEN ◽  
HES LUBOS ◽  
AZEEM MUSADDAQ ◽  
FAYALA FATEN

The utmost parameters that measure the thermo-physiological comfort of garments are thermal conductivity, thermal absorptivity and water vapor permeability. In this paper, thermo-physiological comfort was studied with different weave design and moisture content. Thermal properties and water vapor permeability in dry and wet state of all fabric samples were determined by ALAMBETA and Permetest respectively. Results showed that the weaving structure and yarn composition in weft were closely related to the thermal properties and water vapor permeability in presence of moisture. Woven fabric samples were constructed by varying the weave design and weft composition. In wet state, moisture content up to 20%, weave structures exhibited non-significant behavior for thermal properties due to air fraction. As the moisture content enhanced, woven structure made with polyester weft yarn provided cooler feeling with skin contact.


2021 ◽  
Vol 1044 ◽  
pp. 191-200
Author(s):  
Emma Rochima ◽  
Nur Silmi Nafisah ◽  
Rosidah ◽  
Iis Rostini ◽  
Subaryono

The biocomposites were prepared from chitosan, carragenan and modified tapioca with lauric acid addition. The biocomposite were used as edible film material thus improving the mechanical characteristics. The purpose of this study was to determine the amount of lauric acid addition that produced biocomposites with the best characteristics. This study used experimental method. The different concentration of lauric acid used as the treatment was 0%, 10%, 20%, 30%, 40% from total solid of hydrocolloids materials (w/w). Data were analyzed statistically using the F test (ANOVA test) with confidence level of 95%. The results showed more than 10% addition of lauric acid decreased the value of moisture content, tensile strenght, percent elongation and water vapor transmission but increase thickness, opacity and transparency value. The addition of 10% lauric acid produced biocomposite with the best characteristics according to JIS (Japanese Industrial Standard) which had the moisture content of 42.65%, thickness of 0.047 mm, tensile strength of 13.8 MPa, percent elongation of 29.2%, water vapor transmission rate of 8.5 g/m2/day, opacity 8.9% and transparency 7.5. This research used renewable and biodegradable materials that can be applied to produce edible packaging with the best characteristics and eco-friendly.


2019 ◽  
Vol 99 ◽  
pp. 03004
Author(s):  
Sabur F. Abdullaev ◽  
Vladimir A. Maslov ◽  
Bahron I. Nazarov ◽  
Nasridin Kh. Minikulov ◽  
Abdugani M. Djuraev

The article describes the results of measurements that were carried out systematically during 2010-2017 at the AERONET station in Dushanbe. The data on the changes of aerosol optical thickness (AOT), moisture content and Ångström parameter are described. The seasonal and annual variations of these quantities were analyzed. The regularities of repeatability histograms as statistical characteristics of the atmospheric parameters were studied.


Author(s):  
Selina C. Dover ◽  
Ambarish R. Dahale ◽  
Babak Shotorban ◽  
Shankar Mahalingam ◽  
David R. Weise

Since wildland fires occur in living vegetation, the fuel moisture content must be considered in order to correctly predict the behavior of the fire. One facet of combustion of pyrolysis gases that has not been considered in previous research is the effect of moisture on the combustion process. This effect is investigated by using CHEMKIN software to study an opposed diffusion flame model for three pyrolysis fuels relevant to wildfires. The effect of moisture on flame structure is investigated by varying the mole fraction of water vapor in the fuels, with air as oxidizer. In all cases, the flame extinguishes when the water mole fraction is between 0.55 and 0.65. O2 and H are the only components that exhibit a significant change in concentration under these conditions.


2019 ◽  
Vol 11 (1) ◽  
pp. 284 ◽  
Author(s):  
Ladislav Dzurenda ◽  
Adrian Banski

In this paper, we present an analysis on the effect of the moisture content of firewood on the atmospheric thermal load created by the heating of flue gases with temperatures of tfg = 120–200 °C, emitted by a boiler when wood with moisture content of W = 10%–60% is combusted. The load of the atmosphere created by the heat of the flue gases with temperatures of ts = 120 °C from the boiler, where dried wood with the moisture content of W = 10% is combusted, is Q = 9.2 MJ·GJ−1. The atmospheric thermal load caused by flue gases with the temperature of ts = 200 °C, resulting from the combustion process of wet firewood with a moisture content of W = 60%, is 3.8 times higher compared with the above-mentioned conditions. The heating of water vapor from the evaporated water occurring in combusted wood, as well as the heat of the heated nitrogen and unoxidized oxygen in the combustion air delivered to the furnace of a firewood boiler, are considered to be reasons for the increasing atmospheric thermal load caused by the heating of flue gases, resulting from the combustion of wood with higher moisture content.


2019 ◽  
Vol 276 ◽  
pp. 05010
Author(s):  
Dasyri Pasmar ◽  
Noor Endah Mochtar ◽  
Ali Altway

Sidoarjo mud (LuSi) is very hot and sticky mud-like substance produced by eruption of Kujung, Kalibeng, and Pucangan formations caused by well exploration for gas in Porong, Sidoarjo, East Java, Indonesia. LuSi submerged villages, industrial areas, and rice fields in Porong. The eruption is still taking place so that it needs more area and higher dike surrounded to retain the mud. Therefore, it is very urgent to use LuSi in huge volumes such as for borrowed materials. LuSi grain size and its strength, however, do not meet the borrowed materials requirement. Therefore, the grain size was improved using granulator drum and lime Ca(OH)2 was used to increase its strength. The grain size produced by granulator was affected by length, diameter, and rotation rate of granulator drum, and also by constant of granulation rate ‘k’ that was function of other parameters, inclination angle of granulator drum (S), moisture content (W), and water temperature (T). The results show that lime needed for stabilization is 10% of LuSi dry weight. The “k” is affected by lime where parameters (S) and (W) become smaller and (T) is higher. Lime also produces dryer granular, higher water resistance, and shorter granulation process. Besides, higher water temperature during granulation process is needed to develop bigger grain size for granular stabilized-LuSi.


Sign in / Sign up

Export Citation Format

Share Document