scholarly journals Theoretical and Experimental Investigation of Bonded Patch Repairs of a Rubber Reinforced Composite Conveyor Belt

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1710
Author(s):  
Rawdha Kessentini ◽  
Olga Klinkova ◽  
Imad Tawfiq ◽  
Mohamed Haddar

The present study proposes a reparation method for designing and optimizing a rubber to rubber and rubber to textile reinforcement. The present application is the conveyor belt used in the transport industry. The tensile behavior of the repaired specimens was studied using experimental results. A bidirectional linear analysis allows us to predict the effect of geometric parameters on the stress concentration zone of the repaired belt under hygro-thermo mechanical loading and its consequence on the integrity of the structure. A tensile test was carried out in order to investigate the behavior of a repaired specimen made with a rubber cover patch and an inner composite patch. Two stacking sequences of an inner composite patch and the material properties are considered in the parametric study in order to reduce the stress concentration in the parent belt. The correlation between the theoretical and experimental results allows us to define a strength tool to understand the load transfer from rubber to a textile rubber patch.

2020 ◽  
Vol 2020 (14) ◽  
pp. 305-1-305-6
Author(s):  
Tianyu Li ◽  
Camilo G. Aguilar ◽  
Ronald F. Agyei ◽  
Imad A. Hanhan ◽  
Michael D. Sangid ◽  
...  

In this paper, we extend our previous 2D connected-tube marked point process (MPP) model to a 3D connected-tube MPP model for fiber detection. In the 3D case, a tube is represented by a cylinder model with two spherical areas at its ends. The spherical area is used to define connection priors that encourage connection of tubes that belong to the same fiber. Since each long fiber can be fitted by a series of connected short tubes, the proposed model is capable of detecting curved long tubes. We present experimental results on fiber-reinforced composite material images to show the performance of our method.


2015 ◽  
Vol 1120-1121 ◽  
pp. 670-674
Author(s):  
Abdelmadjid Ait Yala ◽  
Abderrahmanne Akkouche

The aim of this work is to define a general method for the optimization of composite patch repairing. Fracture mechanics theory shows that the stress intensity factor tends towards an asymptotic limit K∞.This limit is given by Rose’s formula and is a function of the thicknesses and mechanical properties of the cracked plate, the composite patch and the adhesive. The proposed approach consists in considering this limit as an objective function that needs to be minimized. In deed lowering this asymptote will reduce the values of the stress intensity factor hence optimize the repair. However to be effective this robust design must satisfy the stiffness ratio criteria. The resolution of this double objective optimization problem with Matlab program allowed us determine the appropriate geometric and mechanical properties that allow the optimum design; that is the selection of the adhesive, the patch and their respective thicknesses.


2006 ◽  
Vol 326-328 ◽  
pp. 1769-1772
Author(s):  
Chun Wang Zhao ◽  
Yong Ming Xing

A micro mechanical study of Carbon/Epoxy composites with internally dropped plies has been made using micro-moiré interferometry. The experimental results show that there is a stress concentration region before the dropped ply. Micro cracks were initiated and propagated in this region. Two failure mechanisms in the dropped ply region were observed.


Author(s):  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Charles Cross ◽  
M.-H. Herman Shen

An energy-based method for predicting fatigue life of half-circle notched specimens, based on the nominal applied stress amplitude, has been developed. This developed method is based on the understanding that the total strain energy dissipated during a monotonic fracture and a cyclic process is the same material property, where the density of each can be determined by measuring the area underneath the monotonic true stress-strain curve and measuring the sum of the area within each Hysteresis loop in the cyclic process, respectively. Using this understanding, the criterion for determining fatigue life prediction of half-circle notched components is constructed by incorporating the stress gradient effect through the notch root cross-section. Though fatigue at a notch root is a local phenomenon, evaluation of the stress gradient through the notch root cross-section is essential for incorporating this method into finite element analysis minimum potential energy process. The validation of this method was carried out by comparison with both notched and unnnotched experimental fatigue life of Aluminum 6061-T6 (Al 6061-T6) specimens under tension/compression loading at the theoretical notch fatigue stress concentration factor of 1.75. The comparison initially showed a slight deviation between prediction and experimental results. This led to the analysis of strain energy density per cycle up to failure, and an improved Hysteresis representation for the energy-based prediction analysis. With the newly developed Hysteresis representation, the energy-based prediction comparison shows encouraging agreement with unnotched experimental results and a theoretical notch stress concentration value.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
P. S. Wei

Mechanisms for the formation of bead defects, such as humping, gouging, rippling, and other unexpected surface patterns, encountered in welding or drilling are interpreted and reviewed from thermal-fluid science viewpoint. These defects usually accompanying with porosity, undercut, segregation, stress concentration, etc., seriously reduce the properties and strength of the joint or solidification. Even though different mechanisms for formation of the defects have been extensively proposed in the past, more systematical understanding of pattern formations from thermal, fluid, physics, electromagnetic, pattern selections, and metallurgy sciences is still limited. The effects of working parameters and properties on humping and rippling, for example, can be systematically and quantitatively interpreted from scale analysis presented in this work. Good comparison with experimental results reveals mechanisms of different surface patterns. The mechanistic findings for bead defects are also useful for other manufacturing and materials processing.


2000 ◽  
Author(s):  
Hungyu Tsai ◽  
Xinjian Fan

Abstract The axisymmetric elastic deformations in shape memory alloy (SMA) fiber reinforced composites are studied. We analyze the stress concentration near the interface between the fiber and the matrix as a result of a pre-described phase transformation in the active fiber. A typical model involving a single infinite fiber embedded in an infinite elastic matrix is studied. A portion of the fiber is allowed to undergo phase transformation along the axial direction so that its length is changed by the corresponding transformation strain (typically a few percentages), while the matrix is assumed to be linearly elastic and isotropic. Under certain bonding conditions, the deformation of fiber forces the matrix to deform in the elastic regime in order to accommodate the transformation strains. The problem is formulated as axisymmetric deformations coupled with a finite transformation region in the fiber. In order to avoid infinite stresses found under perfect bonding conditions, we adopt a “spring” model which accounts for the elasticity of a transition layer at the interface. This model allows for relative displacements between the fiber and the matrix. A linear relation between this relative displacement and the shear stress is used. The exact elasticity solution (in integral form) to this problem is found using Love’s stress function and Fourier transform. Numerical integration is performed to produce the stress distributions. In particular, the shear load transfer profiles along the interface are calculated for various spring stiffness. It is found that the singularity is eliminated and the stress concentration factor depends on the stiffness of the transition layer.


2019 ◽  
Vol 292 ◽  
pp. 191-196 ◽  
Author(s):  
Tomáš Augustín ◽  
Ľudovít Fillo ◽  
Jaroslav Halvonik

Experimental programs focused on the issues related to the flat slabs still attract the attention of the scientists around the world. At the Central Laboratories of STU in Bratislava, together 8 fragments of the flat slabs were tested, focusing on the influence of the openings on the punching resistance. The two reference specimens were without openings and the others had two symmetrically placed openings. The openings were moved from the face of the column in multiples of the effective depth (0d, 1d, 2d). For the assessment of the tests, the models introduced in the relevant standards and codes were applied. The experimental results were also used for NFEM model calibration. The paper will deal with comparison of the theoretical and experimental results as well as with non-linear analysis that was performed in the ATENA FEM program, with the goal to obtain the most realistic behaviour of the flat slabs with openings. The material properties used in the analysis were obtained from the laboratory tests.


Sign in / Sign up

Export Citation Format

Share Document